Bài giảng Truyền số liệu - Chương 4: Xử lý số liệu truyền
NỘI DUNG
4.1 Mã hoá số liệu mức vật lý
4.2 Phát hiện lỗi và sữa sai
4.3 Nén số liệu
4.4 Mật mã hoá số liệu
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Truyền số liệu - Chương 4: Xử lý số liệu truyền", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Truyền số liệu - Chương 4: Xử lý số liệu truyền
Môn Học TRUYỀN SỐ LIỆU BÀI GIẢNG CHƯƠNG 4 XỬ LÝ SỐ LIỆU TRUYỀN BỘ CÔNG THƯƠNG TRƯỜNG CAO ĐẲNG KỸ THUẬT CAO THẮNG KHOA ĐIỆN TỬ - TIN HỌC NỘI DUNG 4.1 Mã hoá số liệu mức vật lý 4.2 Phát hiện lỗi và sữa sai 4.3 Nén số liệu 4.4 Mật mã hoá số liệu NỘI DUNG 4.1 Mã hoá số liệu mức vật lý 4.2 Phát hiện lỗi và sữa sai 4.3 Nén số liệu 4.4 Mật mã hoá số liệu CÁC LOẠI MÃ ĐƯỜNG DÂY (LINE CODES) Unipolar • Sử dụng các xung áp, gửi dọc theo dây dẫn • Một mức điện áp cho bit 0 và 1 mức cho bit 1 – Thông thường bit 1 có mức điện áp 1 cực tính (âm hoặc dương), bit 0 có mức điện áp 0 • Mức trung bình một chiều khác 0 • Khi tín hiệu phía thu không thay đổi, thì sẽ không xác định được thời điểm bắt đầu và kết thúc của 1 bit, dẫn đến sự đồng bộ bit kém Unipolar 7Polar • Sử dụng 2 mức điện áp âm và dương • Thành phần trung bình 1 chiều giảm đáng kể • Bao gồm: – NRZ – RZ – Biphase Polar NRZ Nonreturn to zero (NRZ): mức điện áp luôn âm hoặc dương Nonreturn to zero – level (NRZ-L) • 2 mức điện áp khác nhau cho bit 1 và bit 0 • Thông thường điện áp âm dùng cho bit 1, điện áp dương dùng cho bit 0 (hoặc có thễ ngược lại) Nonreturn to zero – Inverted (NRZ-I) • Bit 1 sẽ tạo một sự thay đổi mức điện áp • Bit 0 giữ nguyên mức điện áp Polar NRZ Ví dụ Vẽ giản đồ xung cho chuỗi [LSB]01111111[MSB] theo mã NRZ-L và NRZ-I Return to zero (RZ): Mã hoá 3 mức: dương, âm, và zero Tín hiệu thay đổi trong mỗi khoảng bit Bit 1: thay đổi từ dương xuống zero Bit 0: thay đổi từ âm lên zero Khả năng đồng bộ bit rất hiệu quả tuy nhiên đòi hỏi một băng thông rộng Return to zero (RZ) Return to zero (RZ): Ví dụ Vẽ xung truyền chuỗi bit [LSB]1110010[MSB] Biphase Mã hóa giải quyết vấn đề đồng bộ tốt nhất Tín hiệu thay đổi ở điểm giữa nhưng không trở về zero như RZ Có 2 loại Biphase: Manchester Differential Manchester (Manchester vi sai) Manchester Mã hóa chuyển mức tại điểm giữa Bit 1 tương ứng với biến đổi trạng thái từ âm sang dương Bit 0 tương ứng với với biến đổi từ dương sang âm Manchester Bit 1: - + Bit 0: + - Manchester vi sai Cũng sử dụng phương pháp đảo mức điểm giữa của bit để dùng cho việc đồng bộ bit Phân biệt bit 0 /1 dựa trên việc tồn tại hay không tồn tại chuyển đổi tại đầu mỗi bit Bit 0: chuyển đổi Bit 1: giữ nguyên Manchester vi sai Ví dụ Manchester và manchester vi sai Bipolar Sử dụng 3 mức điện áp: dương, âm, zero Bit 0 tương ứng với mức zero Bit 1 tương ứng với thay đổi xen kẻ dương âm Ba loại thông dụng AMI B8ZS HDB3 AMI AMI = Alternative Mark Inversion Bit 0 ở mức zero Bit 1 ở mức âm/dương: các bit 1 gần nhau nhận xen kẻ mức dương âm Đồng bộ bit tốt nếu chuỗi có nhiều bit 1, ngược lại không đảm bảo nếu gặp dãy bit 0 kéo dài AMI AMI = Alternative Mark Inversion Ví dụ Vẽ xung truyền chuỗi bit [LSB]0010.0001.0010.1000[MSB] B8ZS B8ZS = Bipolar 8-zero Substitution Giải quyết vấn đề đồng bộ trong trường hợp có xuất hiện các chuỗi bit 0 kéo dài Tương tự AMI, có sự đổi cực tính mỗi khi gặp bit 1 Mẫu 8 bit 0 liên tiếp được thay bằng mẫu 8 bit khác Tùy vào cực tính của bit nằm trước mẫu 8 bit 0 này mà sinh ra mẫu bit thay thế: Nếu bit này có cực tính dương thì thay bằng dãy 0 0 0 + - 0 - + Nếu bit này có cực tính âm thì thay bằng dãy 0 0 0 - + 0 + - B8ZS B8ZS = Bipolar 8-zero Substitution 26 Ví dụ • B8ZS • Chuỗi bit truyền: 00.1000.0000.0001 HDB3 HDB3 = High Density Bipolar 3 Mã hóa 4 bit 0 liên tiếp, dựa trên tổng số bit 1 kể từ lần thay thế sau cùng và cực tính của bit nằm liền trước Nếu tổng số bit 1 trước đó là lẻ thì bit 0 thứ 4 sẽ chuyển thành bit vi phạm Nếu tổng số bit 1 trước đó là chẳn thì bit 0 thứ nhất và thứ 4 sẽ chuyển thành bit vi phạm HDB3 HDB3 = High Density Bipolar 3 29 Ví dụ – HDB3 – Chuỗi bit truyền: 00.1000.0000.0001 Số bit 1 kể từ lần thay thế cuối cùng là 1 Số bit 1 kể từ lần thay thế cuối cùng là 0 NỘI DUNG 4.1 Mã hoá số liệu mức vật lý 4.2 Phát hiện lỗi và sữa sai 4.3 Nén số liệu 4.4 Mật mã hoá số liệu Các dạng lỗi Có 2 loại lỗi Lỗi 1 bit (Single-bit errors) Chỉ 1 bit bị lỗi Không ảnh hưởng đến các bit xung quanh Thường xảy ra do nhiễu trắng Lỗi chùm (Burst errors) Một chuỗi liên tục B bit trong đó có bit đầu, bit cuối và các bit bất kỳ nằm giữa chuỗi đều bị lỗi Thường xảy ra do nhiễu xung Ảnh hưởng càng lớn đối với tốc độ truyền cao Phát hiện lỗi Phát hiện lỗi Parity check Là phương pháp phát hiện lỗi đơn giản nhất Gắn một bit parity vào khối dữ liệu sao cho tổng số bit 1 của khối dữ liệu là một số chẵn hoặc lẻ Có 2 kiểu kiểm tra parity Parity chẵn Parity lẻ Đặc điểm: chỉ dò được lỗi sai một số lẻ bit, không dò được lỗi sai một số chẵn bit, không sửa được lỗi, ít dùng trong truyền dữ liệu đi xa, đặc biệt ở tốc độ cao Parity chẵn và lẻ Parity check: bit kiểm tra được thêm vào sao cho tổng số bit 1 của chuỗi bit là số chẵn hoặc lẻ Ví dụ Cho biết tín hiệu truyền là kí tự mã ASCI
File đính kèm:
- bai_giang_truyen_so_lieu_chuong_4_xu_ly_so_lieu_truyen.pdf
- truyen_so_lieu_chuong_4_phan_2_086_499876.pdf