Tính toán lựa chọn tham số nguyên lý nâng cao độ nhạy đầu thu quang học ứng dụng trong đo xa laser và hệ thống thông tin quang
Độ nhạy được đánh giá thông qua mức tín hiệu nhỏ nhất mà đầu thu có thể thu nhận
được với tỷ số lỗi bit BER (Bit-Error Ratio) được xác định theo một tiêu chuẩn nhất định.
Tỷ số lỗi BER này được các tổ chức tiêu chuẩn xác định để đảm bảo độ chính xác về mặt
thông tin trong lĩnh vực mà nó được ứng dụng. Tổ chức mạng đồng bộ tín hiệu quang học
SONET chỉ định rằng, BER phải nhỏ hơn 10-10, còn tổ chức Fiber Channel quy định BER
từ 10-12 [1]. Hay nói cách khác, BER chính là cơ sở để xác định độ nhạy đầu thu quang.
Trong thiết kế hệ thống thu phát tín hiệu quang, người ta sử dụng độ nhạy đầu thu để xác
định mức tối đa khoảng cách hoặc giới hạn liên kết của hệ thống, như hệ đo xa laser hay
thông tin quang [2].
Trong các hệ thống sử dụng tín hiệu quang học có độ rộng xung cực ngắn ở tần số lớn
như các thiết bị đo xa laser và thông tin quang, độ nhạy là một trong những tham số đầu
tiên cần xác định để thiết kế hệ thống, nó quyết định đến khả năng hoạt động của hệ thống.
Thông thường, những hệ thống này sẽ được người thiết kế dựa trên độ nhạy của
Photodiode chỉ ra trong tài liệu được cung cấp bởi nhà sản xuất [3]. Tuy nhiên, trong ứng
dụng thực tế không nhiều trường hợp sử dụng trực tiếp những Photodioe mà sau
Photodiode sẽ là những tầng khuếch đại xử lý tín hiệu để thu được những mức tín hiệu rất
nhỏ và tăng phạm vi đo được của hệ thống [2]. Độ nhạy khi đó chủ yếu sẽ bị ảnh hưởng
bởi một số yếu tố như, đáp ứng phổ, dòng tối, điện dung ký sinh của Phototdiode, đóng
góp của các nguồn nhiễu. Sau đó là ảnh hưởng của những tham số của các bộ khuếch đại
như trở kháng, băng thông, nhiễu dòng đầu vào, hệ số khuếch đại, các điện dung ký sinh,.
Nói chung, độ nhạy đầu thu quang chủ yếu chịu ảnh hưởng bởi các yếu tố của Photodiode
thu và tầng khuếch đại trở kháng TIA (TransImpendance Amplifier). Việc tính toán độ
nhạy của một đầu thu quang học cần phải tính đến hầu hết các tham số này và một số giả
định để giúp việc tính toán thu được kết quả sát với thực tế. Do đó, trong nội dung bài báo
này, nhóm tác giả trình bày một phương pháp tính toán độ nhạy bao gồm các tầng khuếch
đại phía sau một Photodiode thu. Kết quả thu được này sẽ là cơ sở để thực hiện những tính
toán thiết kế cho hệ thống quang học của cả thiết bị.
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Tóm tắt nội dung tài liệu: Tính toán lựa chọn tham số nguyên lý nâng cao độ nhạy đầu thu quang học ứng dụng trong đo xa laser và hệ thống thông tin quang
Vật lý H. A. Đức, V. Q. Thủy, T. T. Kiên, “Tính toán lựa chọn hệ thống thông tin quang.” 174 TÍNH TOÁN LỰA CHỌN THAM SỐ NGUYÊN LÝ NÂNG CAO ĐỘ NHẠY ĐẦU THU QUANG HỌC ỨNG DỤNG TRONG ĐO XA LASER VÀ HỆ THỐNG THÔNG TIN QUANG Hoàng Anh Đức*, Vũ Quốc Thủy, Tạ Trung Kiên Tóm tắt: Trong ứng dụng đo xa laser hệ thống thông tin quang và một số ứng dụng bằng tín hiệu quang khác, độ nhạy đầu thu là một tham số quyết định đến chất lượng của thiết bị hoặc phạm vi hoạt động của hệ thống. Việc tính toán được độ nhạy đầu thu quang sẽ là cơ sở để thiết kế các hệ thống ứng dụng tín hiệu quang học đặc biệt là các tín hiệu laser có xung cực ngắn và tần số lớn trong thiết bị đo xa laser. Bài báo này trình bày giải pháp tính toán độ nhạy đầu thu quang dựa trên cơ sở công suất trung bình của tín hiệu vào. Từ khóa: Độ nhạy đầu thu quang; Đầu thu tín hiệu quang; Độ nhạy đầu thu đo xa laser; Độ nhạy đầu thu xung quang cực ngắn; Độ nhạy đầu thu thông tin quang; Đo xa laser. 1. ĐẶT VẤN ĐỀ Độ nhạy được đánh giá thông qua mức tín hiệu nhỏ nhất mà đầu thu có thể thu nhận được với tỷ số lỗi bit BER (Bit-Error Ratio) được xác định theo một tiêu chuẩn nhất định. Tỷ số lỗi BER này được các tổ chức tiêu chuẩn xác định để đảm bảo độ chính xác về mặt thông tin trong lĩnh vực mà nó được ứng dụng. Tổ chức mạng đồng bộ tín hiệu quang học SONET chỉ định rằng, BER phải nhỏ hơn 10-10, còn tổ chức Fiber Channel quy định BER từ 10-12 [1]. Hay nói cách khác, BER chính là cơ sở để xác định độ nhạy đầu thu quang. Trong thiết kế hệ thống thu phát tín hiệu quang, người ta sử dụng độ nhạy đầu thu để xác định mức tối đa khoảng cách hoặc giới hạn liên kết của hệ thống, như hệ đo xa laser hay thông tin quang [2]. Trong các hệ thống sử dụng tín hiệu quang học có độ rộng xung cực ngắn ở tần số lớn như các thiết bị đo xa laser và thông tin quang, độ nhạy là một trong những tham số đầu tiên cần xác định để thiết kế hệ thống, nó quyết định đến khả năng hoạt động của hệ thống. Thông thường, những hệ thống này sẽ được người thiết kế dựa trên độ nhạy của Photodiode chỉ ra trong tài liệu được cung cấp bởi nhà sản xuất [3]. Tuy nhiên, trong ứng dụng thực tế không nhiều trường hợp sử dụng trực tiếp những Photodioe mà sau Photodiode sẽ là những tầng khuếch đại xử lý tín hiệu để thu được những mức tín hiệu rất nhỏ và tăng phạm vi đo được của hệ thống [2]. Độ nhạy khi đó chủ yếu sẽ bị ảnh hưởng bởi một số yếu tố như, đáp ứng phổ, dòng tối, điện dung ký sinh của Phototdiode, đóng góp của các nguồn nhiễu. Sau đó là ảnh hưởng của những tham số của các bộ khuếch đại như trở kháng, băng thông, nhiễu dòng đầu vào, hệ số khuếch đại, các điện dung ký sinh,... Nói chung, độ nhạy đầu thu quang chủ yếu chịu ảnh hưởng bởi các yếu tố của Photodiode thu và tầng khuếch đại trở kháng TIA (TransImpendance Amplifier). Việc tính toán độ nhạy của một đầu thu quang học cần phải tính đến hầu hết các tham số này và một số giả định để giúp việc tính toán thu được kết quả sát với thực tế. Do đó, trong nội dung bài báo này, nhóm tác giả trình bày một phương pháp tính toán độ nhạy bao gồm các tầng khuếch đại phía sau một Photodiode thu. Kết quả thu được này sẽ là cơ sở để thực hiện những tính toán thiết kế cho hệ thống quang học của cả thiết bị. 2. NỘI DUNG 2.1. Tham số ảnh hưởng đến độ nhạy đầu thu quang Độ nhạy có thể được biểu thị bằng công suất trung bình PAVG[dBm] hoặc dưới dạng biên độ được điều chế OMA (Optical Modulation Amplitude) [Wpp] [4]. Như vậy, độ Nghiên cứu khoa học công nghệ Tạp chí Nghiên cứu KH&CN quân sự, Số 69, 10 - 2020 175 nhạy sẽ là OMA hoặc PAVG nhỏ nhất mà tại đó tỉ lệ bít thông tin lỗi BER lớn nhất không bị vi phạm. Hay nói cách khác, độ nhạy sẽ là mức tín hiệu quang nhỏ nhất mà đầu thu quang học thu được với một tỷ lệ lỗi cho phép. Việc tính toán độ nhạy đầu thu theo hai đại lượng này đều có những ưu điểm riêng. Để xác định độ nhạy theo OMA đòi hỏi phải có thiết bị đo công suất từ đỉnh đến đỉnh của hai mức tín hiệu của laser ở tốc độ dữ liệu cao, thiết bị này thường rất đắt [5]. Sử dụng phương pháp công suất quang trung bình PAVG có thể đo được dễ dàng và đáng tin cậy với những thiết bị đo công suất quang tương đối rẻ, do đó, nhóm tác giả sử dụng PAVG để tính toán độ nhạy. Để tính toán được độ nhạy đầu thu cần thiết kế, ta phải tính toán được các đại lượng PAVG (hoặc OMA) từ những phần tử cơ bản của đầu thu như Photodiode và các bộ khuếch đại mà chúng ta lựa chọn thiết kế. Hình 1 là sơ đồ khối điển hình của một đầu thu quang [2, 6]. Những yếu tố ảnh hưởng mạnh nhất đến độ nhạy của đầu thu sẽ chủ yếu bao gồm các nguồn nhiễu tác động đến quá trình chuyển đổi quang-điện, cụ thể là những phần tử Photo-Detector và bộ khuếch đại trở kháng (TIA – TransImpendance Amplifier). Hình 1. Sơ đồ khối một đầu thu xung quang điển hình [2]. Trong đó, phần đầu tiên trong sơ đồ khối Photo-Detector là phần tử có những tham số được cung cấp bởi nhà sản xuất, người th ... g cấp như một sản phẩm hoàn thiện. Đây là tầng khuếch đại gây nhiễu chủ yếu đối với đầu thu quang và quyết định nhất đến độ nhạy đầu thu [2]. Chúng ta cần tính toán lựa chọn những phần tử này dựa trên những tham số về khả năng tác động của nhiễu như: in nhiễu dòng đầu vào của bộ khuếch đại, điện dung của APD, băng thông của bộ khuếch đại TIA. Tuy nhiên, những tham số này lại có tác động qua lại và tỷ lệ với nhau. Nhiễu in là nhiễu vốn có của bộ khuếch đại TIA, nó tỷ lệ thuận với giá trị của điện dung photodiode và băng thông của TIA [2]. Trong trường hợp này, ta Vật lý H. A. Đức, V. Q. Thủy, T. T. Kiên, “Tính toán lựa chọn hệ thống thông tin quang.” 176 cũng không xét đến ảnh hưởng của băng thông bộ khuếch đại TIA, vì trong mỗi ứng dụng sẽ có yêu cầu về băng thông cụ thể khác nhau. Khối tiếp theo trong hình 1 là bộ khuếch đại giới hạn, bộ khuếch đại này có hai nhiệm vụ chính là tiếp tục làm tăng độ lớn của tín hiệu và tạo dạng xung của tín hiệu ra sao cho tín hiệu có độ rộng và sườn lên, sườn xuống của tín hiệu phù hợp với bộ phục hồi tín hiệu. Hay nói cách là bộ khuếch đại giới hạn là bộ khuếch đại đệm cho bộ tạo tín hiệu ra. Ngoài ra, bộ khuếch đại giới hạn cũng có nhiệm vụ làm giảm tác động của nhiễu đã được khuếch đại trong bộ TIA đến tín hiệu ra [2]. Ta có thể thấy, bộ khuếch đại giới hạn là yếu tố thuần túy kỹ thuật điện tử. Tuy nhiên, yếu tố ảnh hưởng đến độ nhạy đầu thu ở đây chính là mức tín hiệu vào thấp nhất của bộ khuếch đại này. Mặc dù nó có thể làm tăng hệ số khuếch đại của đầu thu nhưng nó lại làm giảm độ nhạy của cả đầu thu. Vì bộ khuếch đại TIA phải khuếch đại tín hiệu ban đầu đến một ngưỡng lớn hơn ngưỡng điện áp vào của bộ khuếch đại giới hạn để chúng có thể tiếp tục chức năng của mình. Do đó, việc lựa chọn những bộ khuếch đại nhạy cần phải chọn những bộ khuếch đại có thể đạt được ngưỡng tín hiệu vào càng nhỏ càng tốt. Như vậy, để thiết kế một đầu thu chúng ta cần lựa chọn những phần tử cơ bản theo sơ đồ khối ở hình 1. Từ đó, chúng ta tính toán độ nhạy đầu thu từ những tham số của các phần tử đã được lựa chọn để thu được độ nhạy. Cũng từ cơ sở đó, ta có thể thực hiện điều chỉnh và lựa chọn lại những phân tử này rồi tính toán lại sao cho đáp ứng được độ nhạy cần thiết. 2.2. Tính toán hiệu chỉnh chính xác tham số Quá trình tính toán độ nhạy đầu thu xung quang được xuất phát từ tỷ lệ bit lỗi BER mà đầu thu quang học cần phải đáp ứng được [2]. Từ đó, xác định tỷ số tín trên tạp SNRvà như đã đề cập ở trên, chúng ta sẽ tính toán đại lượng OMA nhỏ nhất từ những tham số của các phần tử cơ bản để thiết kế đầu thu. Theo tài liệu kỹ thuật của các nhà sản suất, ta sẽ có trung bình bình phương RMS (Root Mean Square) của nhiễu in đầu vào của bộ khuếch đại TIA và đáp ứng phổ (ρ) photodiode. Từ biểu thức biểu diễn mối quan hệ giữa độ nhạy đầu thu và các tham số [2] ta tính toán đại lượng OMA nhỏ nhất: 𝑂𝑀𝐴𝑀𝐼𝑁 = 𝑖𝑛𝑆𝑁𝑅 𝜌 (1) Trong đó: OAMMIN là biên độ điều chế tín hiệu quang ở mức nhỏ nhất ứng với BER; là đáp ứng phổ của Photodiode thu. Tham số SNR xác định theo giá trị BER [2, 7] được xác định ban đầu. Sau khi tính toán được độ lớn biên độ điều chế theo tỷ số bit lỗi, ta có thể tính được giá trị gần đúng của độ nhạy theo biểu thức sau [8]: 𝑃𝐴𝑉𝐺 = 𝑂𝑀𝐴 𝑟𝑒 + 1 2 𝑟𝑒 − 1 𝑊 (2) Trong đó: re là tỷ số công suất của hai mức logic re = P1/P0; P1 là công suất mức logic 1; P0 là công suất mức logic 0. Trong trường hợp này, ta giả định rằng, nhiễu là nhiễu dạng Gaussian và tiếp tục giả định rằng, tầng khuếch đại giới hạn phía sau bộ khuếch đại TIA có quyết định ngưỡng bằng không. Do đó, phân bố lỗi của logic 1 và mức logic 0 của luồng dữ liệu NRZ (Nonereturn-to-zero) có thể ước tính được. Trong hình 2, biểu diễn phân bố chuẩn của nhiễu theo hai mức logic và phân bố xác suất các bit lỗi theo hàm tích lũyxác suất. Từ đó cho thấy được, vùng mà tại đó tỷ lệ xuất hiện của các bit bị lỗi phải bằng với chỉ số BER được đặt ra ban đầu. Hình phía bên phải cho thấy, vùng chồng lấn là tập bit lỗi khi giá trị BER 10-12. Mỗi mức logic-một và logic-0 có độ lệch chuẩn 7σ từ lý thuyết điểm quyết định theo ở mức trung bình [2]. Với Nghiên cứu khoa học công nghệ Tạp chí Nghiên cứu KH&CN quân sự, Số 69, 10 - 2020 177 một giá trị BER được lựa chọn ban đầu, ta có thể tra cứu theo [7] giá trị SNR tương ứng. Từ đó, ta có thể thay vào biểu thức (2) để tính được giá trị độ lớn điều chế tín hiệu quang OMA tối thiểu. Hình 2. Phân bố chuẩn của nhiễu tại hai mức logic và phân bố tập bit lỗi theo hàm tích lũy xác suất với BER 10-12tại điện áp ngưỡng quyết định mức logic Vth 0V [2]. Trong trường hợp này, ta đang thấy rằng, tại điện áp 0V đang xác định cả hai mức logic 0 và mức logic 1. Điều này có nghĩa là khoảng cách dọc của hai mức tín hiệu (mắt dọc) được đóng hoàn toàn tại tỷ lệ bit lỗi được xác định ban đầu BER được xác định ban đầu. Tuy nhiên, điều kiện này không thể xảy ra và ngưỡng quyết định mức logic của bộ khuếch đại giới hạn không thể phân biệt được hai mức logic. Do đó, mức logic 1 và mức logic 0 không được phép cùng xác định tại một điện áp và ngưỡng quyết định phải lớn hơn ngưỡng điện áp vào của bộ khuếch đại giới bạn, do đó, những phân tích tính toán trên cần được hiệu chỉnh theo hình 3. Bộ khuếch đại giới hạn luôn có một dải hoạt động đầu vào mà tín hiệu từ đỉnh đến đỉnh tại đầu vào của nó được khuếch đại từ một ngưỡng nào đó, tùy từng bộ khuếch đại mà ta lưa chọn, để duy trì biên độ độ dốc của các sườn tín hiệu ra luôn ổn định. Dải hoạt động này có mức tín hiệu tối thiểu nhỏ hơn đầu ra bộ khuếch đại TIA. Đây là độ nhạy của bộ khuếch đại giới hạn. Để duy trì BER mong muốn, tập các bit lỗi không được vượt qua vùng độ nhạy của bộ khuếch đại giới hạn. Nói cách khác, mắt đặc trưng của bộ khuếch đại giới hạn phải mở ít nhất một lượng bằng độ nhạy của bộ khuếch đại này. Hình 3 minh họa tác động của việc có quyết định lớn hơn 0. Ta thấy rằng, khi ngưỡng quyết định mức logic tăng lên nghĩa là tín hiệu vào sẽ phải tăng thêm một lượng, tương đương với công suất tín hiệu được điều chế phải được điều chỉnh tăm lên một lượng nhất định tùy thuộc vào tham số của bộ khuếch đại ngưỡng và bộ khuếch đại TIA, cụ thể ở đây là hai tham số Vth và ZTIA.Tính thêm yếu tố này, biểu thức (1) trở thành biểu thức sau: 𝑂𝑀𝐴𝑀𝐼𝑁 = 𝑖𝑛𝑆𝑁𝑅 + 𝑉𝑇𝐻 𝑍𝑇𝐼𝐴 𝜌 (3) Vật lý H. A. Đức, V. Q. Thủy, T. T. Kiên, “Tính toán lựa chọn hệ thống thông tin quang.” 178 Trong đó: VTH là độ nhạy của bộ khuếch đại giới hạn; ZTIA là độ lợi khuếch đại trở kháng của TIA. Hình 3. Phân bố chuẩn của nhiễu tại hai mức logic và phân bố tập bit lỗi theo hàm tích lũy xác suất với BER 10-12. Khi ngưỡng quyết định Vth bằng điện áp vào nhỏ nhất của bộ khuếch đại giới hạn (độ nhạy của bộ khuếch đại giới hạn) [2]. Từ biểu thức (3), chúng ta có thể thấy, để tăng độ nhạy của một hệ đầu thu cần phải giảm OMAMIN. Đại lượng này tỉ lệ thuận với nhiễu in của TIA (hình 4) và VTH của bộ khuếch đại giới hạn, đồng thời tỉ lệ nghịch với ZTIAvà của TIA. Hình 4. Sự phụ thuộc độ nhạy theo in của bộ khuếch đại TIA. Như vậy, trong quá trình thiết kế hệ thu, cần lựa chọn các kinh kiện sao có In và VTH càng nhỏ và ZTIA và càng lớn càng tốt. Tuy nhiên, với công nghệ hiện nay, việc lựa chọn này phụ thuộc vào khả năng chế tạo các linh kiện sẵn có mà không thể can thiệp trực tiếp vào chúng. Do đó, cần tích hợp các linh kiện thành hệ thống sao cho có độ nhạy lớn nhất, tức là OMAMIN (hay Pavg) và S nhỏ nhất. Từ những phân tích trên, ta xem xét tính toán một số trường hợp cụ thể với hai loại APD chính hiện nay và một số bộ khuếch đại được nhóm tác giả lựa chọn. Theo giá trị BER = 10 -12 được yêu cầu ban đầu ta có thể xác định giá SNR theo bảng trong [7] như đã đề cập ở trên, ta có SNR = 14,1. Từ những thông số được cung cấp trong tài liệu của nhà Nghiên cứu khoa học công nghệ Tạp chí Nghiên cứu KH&CN quân sự, Số 69, 10 - 2020 179 sản xuất và áp dụng các công thức (2), (3) chúng ta tính được giá trị OMA và PAVG tối thiểu. Áp dụng công thức (4) dưới đây để tính độ nhạy theo decibel. S = 10log(PAVG * 1000) [dBm] (4) trong đó, S là độ nhạy tính theo dBm. Ở đây, chúng xem xét tính toán độ nhạy với hai loại photodiode là Si APD và InGaAs APD, hiện nay hai loại APD này được cung cấp bởi nhiều nhà sản xuất khác nhau nhưng cơ bản chúng đều có đáp ứng phổ khoảng 0,4A/W với Si APD và 0,9 với InGaAs APD khi hệ hố nhân thác lũ M=1. Kết quả tính toán với hai loại APD cho thấy, đầu thu đạt được độ nhạy rất cao. Bộ khuếch đại giới hạn ngày nay cũng rất nhiều loại có thể được lựa chọn phù hợp và chúng có độ nhạy đầu khoảng 5mV, đây cũng là mức nhạy rất tốt cho phép giảm thiểu sự ảnh hưởng của thành phần hiệu chỉnh đến độ nhạy của cả đầu thu. Bảng 1. Kết quả tính toán độ nhạy với một số bộ khuếch đại được lựa chọn. APD TIA KDGH OMA (nW) Pavg (nW) S (dBm) Si APD S8664-02K ρ = 42A/W Tại λ = 600nm M = 100 SNR=14,1 (re=8) MAX3744 in = 330nA ZTIA = 4,5KΩ MAX3748 Vth = 5mV 234 156 -38,1 MAX3793 in = 195nA ZTIA = 3,5KΩ MAX3861 Vth = 6mV 137 88 -40,5 MAX3266 in = 200nA ZTIA = 2,8KΩ THS4520 Vth = 5mV 109 70 -41,5 MAX3267 in = 500nA Z = 1,9KΩ TLV3501 Vth = 6mV 106 68 -41,6 MAX3658 in = 45nA Z = 18,3KΩ THS4541 Vth = 4mV 20 13 -48 InGaAs APD G8931-10 ρ= 90A/W Tại λ = 1550nm M = 100 SNR=14,1 (re=8) MAX3744 in = 330nA Z = 4,5KΩ MAX3748 Vth = 5mV 113 72 -41,3 MAX3793 in = 195nA Z = 3,5KΩ MAX3861 Vth = 6mV 64 41 -43,9 MAX3266 in = 200nA Z = 2,8KΩ THS4520 Vth = 5mV 51 32 -44,8 MAX3267 in = 500nA Z = 1,9KΩ TLV3501 Vth = 6mV 49 31 -45,0 MAX3658 in = 45nA Z = 18,3KΩ THS4541 Vth = 4mV 9 6 -52,2 Từ bảng kết quả tính toán trên ta có thể thấy, các tham số bộ khuếch đại TIA ảnh hưởng nhiều độ nhạy của đầu thu. Các bộ khuếch đại TIA cần được lựa chọn sao cho có được in càng nhỏ càng tốt và ZTIA càng cao càng tốt. Dưới đây là một số bộ khuếch đại TIA Vật lý H. A. Đức, V. Q. Thủy, T. T. Kiên, “Tính toán lựa chọn hệ thống thông tin quang.” 180 mà nhóm tác giả lựa chọn tính toán để xem xét sự thay đổi của độ nhạy đầu thu. Hình 5. Sự phụ thuộc độ nhạy theo in của bộ khuếch đại TIA. Từ kết quả và những phân tích trên, chúng ta có thể lựa chọn và tính toán tương đối chính xác độ nhạy của đầu thu quang học. Trên đây là một số bộ khuếch đại có những tham số rất tốt hiện nay, những bộ khuếch đại này cho phép thiết kế những đầu thu quang học có độ nhạy rất cao. Từ bảng kết quả trên có thể thấy, hai trường hợp có độ nhạy rất cao của Si APD và InGaAs APD. Trường hợp thứ nhất Si APD với bộ khuếch đại TIA MAX3658, bộ khuếch đại giới hạn THS4541 đạt độ nhạy -48dBm đã được nhóm tác giả ứng dụng để thiết kế đầu thu cho thiết bị đo xa laser bán dẫn. Trường hợp thứ hai InGaAs APD với bộ khuếch đại TIA MAX3658, bộ khuếch đại giới hạn THS4541với độ nhạy được tính toán là -52dBm, kết quả này tương đương với độ nhạy đầu thu FPU-21 của hãng Polyus Nga, đây là đầu thu đang được sử dụng nhiều trong thiết bị đo xa laser. Ngày nay, với sự phát triển của công nghệ, cho phép chúng ta có một số lượng lớn các linh kiện phù hợp như các APD photodioe, bộ khuếch đại TIA và các bộ khuếch đại giới hạn để chúng ta có thể tối ưu và lựa chọn các tham số in, ρ, ZTIA, VTH. Tuy nhiên, trong yêu cầu thiết kế đối với hệ thống người thiết kế cần xác định được tỉ lệ bít lỗi BER cho phép đối với hệ thống, tiếp theo đó xác định giới hạn và thỏa hiệp với yêu cầu về hệ quang của thiết bị. Nếu thiết bị cho phép đường kính thông quang thu có kích thước lớn thì yêu cầu đối với độ nhạy có thể được giảm đi và ngược lại chúng ta sẽ cần một đầu thu có độ nhạy rất cao. Khi đó, việc lựa chọn những thành phần để thiết kế đầu thu sẽ rất được chú trọng để đạt được độ nhạy cần thiết. Người thiết kế cần xác định bài toán thỏa hiệp giữa hệ quang và độ nhạy đầu thu trong từng ứng dụng cụ thể để thiết bị đáp ứng được phạm vi hoạt động. 3. KẾT LUẬN Từ việc phân tích những yếu tố ảnh hưởng đến độ nhạy của đầu thu và một số giả định gần đúng chúng ta thực hiện hiệu chỉnh tham số khi tính toán độ nhạy một đầu thu xung quang một cách chính xác hơn và gần với thực tế hơn. Vì trong việc tính toán này đã tính đến độ nhạy của hầu hết các thành phần của đầu thu, đặc biệt là tính đến độ nhạy của các bộ khuếch đại giới hạn phía sau bộ TIA, điều này sẽ cho phép ta tính toán được độ nhạy đầu thu một cách đầy đủ hơn. Kết quả sẽ là cơ sở để tiếp tục tính toán thiết kế cho một hệ quang thu, phát sao cho có thể đạt được mức tín hiệu cần thiết, đặc biệt như với hệ thống đo xa laser và hệ thống thông tin quang. Lời cảm ơn: Nhóm tác giả cảm ơn sự tài trợ về kinh phí của đề tài nghiên cứu khoa học công nghệ cấp Viện KH&CN QS “Nghiên cứu thiết kế, chế tạo thiết bị đo xa laser tần số lặp 5Hz sử dụng đầu phát laser rắn YAG:Nd biến điệu chủ động”, giúp đỡ về ý tưởng khoa học của TS. Nguyễn Văn Thương. TÀI LIỆU THAM KHẢO [1]. David Robert Stauffer, “High Speed Serdes Devices and Applications”, 2009. Nghiên cứu khoa học công nghệ Tạp chí Nghiên cứu KH&CN quân sự, Số 69, 10 - 2020 181 [2]. Paul Muller, “CMOS Multichannel Single-Chip Receivers for Multi-Gigabit”, Optical Data communications, 2007. [3]. Excelitas Technologies, “Avalanche Photodiodes: A User's Guide”, 2011. [4]. Dennis Derickson, Marcus Müller, “Digital Communications Test and Measurement: High-Speed Physical Layer”, 2008. [5]. Colin E. Webb, Julian D. C. Jones, “Handbook of Laser Technology and Applications”, 2003. [6]. https://www.highfrequencyelectronics.com/Jun11/HFE0611_DesNotes.pdf [7]. Maxim Integrated, “Application note 462: HFAN-04.0.2: Converting between RMS and Peak-to-Peak Jitter at a Specified BER”, Rev.2, 04-2008. [8]. https://pdfserv.maximintegrated.com/en/an/AN2710.pdf. ABSTRACT A METHOD TO ESTIMATE THE OPTICAL RECEIVER SENSITIVITY In this article, a solution to estimate the optical receiver sensitivity was presented. In the laser rangefinder systems and optical communication system, the sensitivity is used as a base to determine the maximum distance or link margin available in their system. The sensitivity is the minimum value of the input signal so that the bit-error ratio (BER) exceeds a certain specified number. The calculation of optical receiver sensitivity will be the base to design an optical system suitable to extremely short pulses and high frequencies which is used for laser rangefinder or optical communication. Keywords: Laser range finder; Optical communication systems; Ultrashort optical pulse; Optical receiver sensitivity. Nhận bài ngày 11 tháng 6 năm 2020 Hoàn thiện ngày 24 tháng 7 năm 2020 Chấp nhận đăng ngày 15 tháng 10 năm 2020 Địa chỉ: Viện Vật lý kỹ thuật/Viện KH-CN quân sự. * Email: ducgle@gmail.com.
File đính kèm:
- tinh_toan_lua_chon_tham_so_nguyen_ly_nang_cao_do_nhay_dau_th.pdf