Hệ thống định vị và điều hướng trong nhà

Hệ thống định vị và điều hướng trong nhà đã và đang có nhu cầu ngày càng tăng với phát

triển của công nghệ điện thoại thông minh. Tuy nhiên cho tới thời điểm hiện tại hầu như chưa có một hệ

thống tiêu chuẩn nào đặt ra cho các hệ thống điều hướng trong nhà. Các hệ thống điều hướng trong nhà có

nhiều tác dụng, có thể kể đến như điều hướng hỗ trợ cho 7.3 triệu công dân khiếm thị ở Mỹ. Xét trên quy

mô toàn thế giới thì các hệ thống điều hướng kiểu này còn có tiềm năng lớn hơn rất nhiều lần. Do điểm

yếu của công nghệ GPS và tín hiệu không dây trong nhà nên vấn đề định vị và theo dõi trong nhà đã được

chứng minh là vấn đề khó khăn hơn so với điều kiện ngoài trời. Các phương pháp tiếp cận hiện nay đã và

đang sử dụng hướng tiếp cập bằng các kỹ thuật như mô hình xác thực vân tay kết hợp tần số vô tuyến để

định vị. Trong bài báo này chúng tôi đề xuất hệ thống BluNavi, một hệ thống điều hướng trong nhà hiệu

quả và có thể triển khai rộng rãi. Hệ thống bao gồm hai mô đun chính là: lấy dấu vân tay Wi-Fi và Bộ lọc

Kalman mở rộng dựa trên tín hiệu báo hiệu năng lượng thấp của bluetooth. Mỗi mô-đun được đánh giá

độ chính xác riêng của nó. Hệ thống lấy dấu vân tay đạt độ chính xác trung bình là 82,33% ± 3,07% với

độ tin cậy 95%. Mô hình tính toán góc chết đã thu được độ chính xác trung bình là 3,88m ± 0,37m với độ

tin cậy 95%. Mô hình lan truyền có độ chính xác 5,91m± 1,61m với độ tin cậy 95%. Bộ lọc Kalman mở

rộng với sử dụng cảm biến có độ chính xác 10,22m ± 0,91m với độ tin cậy 95 %.

Hệ thống định vị và điều hướng trong nhà trang 1

Trang 1

Hệ thống định vị và điều hướng trong nhà trang 2

Trang 2

Hệ thống định vị và điều hướng trong nhà trang 3

Trang 3

Hệ thống định vị và điều hướng trong nhà trang 4

Trang 4

Hệ thống định vị và điều hướng trong nhà trang 5

Trang 5

Hệ thống định vị và điều hướng trong nhà trang 6

Trang 6

Hệ thống định vị và điều hướng trong nhà trang 7

Trang 7

Hệ thống định vị và điều hướng trong nhà trang 8

Trang 8

Hệ thống định vị và điều hướng trong nhà trang 9

Trang 9

Hệ thống định vị và điều hướng trong nhà trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 11 trang baonam 7200
Bạn đang xem 10 trang mẫu của tài liệu "Hệ thống định vị và điều hướng trong nhà", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Hệ thống định vị và điều hướng trong nhà

Hệ thống định vị và điều hướng trong nhà
129TẠP CHÍ KHOA HỌC, Số 44, tháng 01 năm 2021
BLUNAVI: AN INDOOR POSITIONING AND NAVIGATION SYSTEM
Nguyễn Ngọc Khương 
Khoa Công nghệ thông tin 
Email: khuongnn@dhhp.edu.vn 
Ngày nhận bài: 15/6/2020
Ngày PB đánh giá: 12/9/2020
Ngày duyệt đăng: 25/9/2020
ABSTRACT: Indoor navigation systems have been in in- creasing demand since the introduction of 
smartphone technology; however, no standard system for indoor nav- igation has been established. An indoor 
navigation has many applications, for example, to help the 7.3 million visually impaired citizens in the US 
to navigate indoors. Due to the weaknesses of GPS and wireless signals indoors, the problem of localizing 
and tracking has proven to be difficult. Current approaches have utilized techniques such as fingerprinting 
and radio frequency propagation models for localization. This paper proposes BluNavi, a cost- efficient and 
widely deployable indoor navigation system. BluNavi implements and compares two modules: Wi-Fi fin- 
gerprinting and an extended Kalman Filter based on dead reckoning and bluetooth low energy beacon signals. 
Each module was evaluated for its accuracy. The fingerprinting system achieved a mean accuracy of 82.33% 
± 3.07% with 95% confidence. The dead reckoning model obtained a mean accuracy of 3.88m ± 0.37m 
with 95% confidence. The propagation model had an accuracy of 5.91m ± 1.61m with 95% confidence. The 
extended Kalman Filter with sensor fusion had an accuracy of 10.22m ± 0.91m with 95% confidence. 
Keywords: Indoor navigation, BLE, Wi- Fifingerprinting, dead reckoning, propagation model, Kalman Filter
HỆ THỐNG ĐỊNH VỊ VÀ ĐIỀU HƯỚNG TRONG NHÀ
TÓM TẮT: Hệ thống định vị và điều hướng trong nhà đã và đang có nhu cầu ngày càng tăng với phát 
triển của công nghệ điện thoại thông minh. Tuy nhiên cho tới thời điểm hiện tại hầu như chưa có một hệ 
thống tiêu chuẩn nào đặt ra cho các hệ thống điều hướng trong nhà. Các hệ thống điều hướng trong nhà có 
nhiều tác dụng, có thể kể đến như điều hướng hỗ trợ cho 7.3 triệu công dân khiếm thị ở Mỹ. Xét trên quy 
mô toàn thế giới thì các hệ thống điều hướng kiểu này còn có tiềm năng lớn hơn rất nhiều lần. Do điểm 
yếu của công nghệ GPS và tín hiệu không dây trong nhà nên vấn đề định vị và theo dõi trong nhà đã được 
chứng minh là vấn đề khó khăn hơn so với điều kiện ngoài trời. Các phương pháp tiếp cận hiện nay đã và 
đang sử dụng hướng tiếp cập bằng các kỹ thuật như mô hình xác thực vân tay kết hợp tần số vô tuyến để 
định vị. Trong bài báo này chúng tôi đề xuất hệ thống BluNavi, một hệ thống điều hướng trong nhà hiệu 
quả và có thể triển khai rộng rãi. Hệ thống bao gồm hai mô đun chính là: lấy dấu vân tay Wi-Fi và Bộ lọc 
Kalman mở rộng dựa trên tín hiệu báo hiệu năng lượng thấp của bluetooth. Mỗi mô-đun được đánh giá 
độ chính xác riêng của nó. Hệ thống lấy dấu vân tay đạt độ chính xác trung bình là 82,33% ± 3,07% với 
độ tin cậy 95%. Mô hình tính toán góc chết đã thu được độ chính xác trung bình là 3,88m ± 0,37m với độ 
tin cậy 95%. Mô hình lan truyền có độ chính xác 5,91m± 1,61m với độ tin cậy 95%. Bộ lọc Kalman mở 
rộng với sử dụng cảm biến có độ chính xác 10,22m ± 0,91m với độ tin cậy 95 %.
Từ khóa: Điều hướng trong nhà, BLE, Wi-Fi, Mô hình lan truyền ngược, Bộ lọc Kalman
±
130 TRƯỜNG ĐẠI HỌC HẢI PHÒNG
I. INTRODUCTION
Indoor navigation systems have been in 
increasing demand since the introduction 
of smartphone technology. The sensors in 
smartphones can be used to provide accu-
rate localization in an outdoor environ-
ment by using the Global Positioning Sys-
tem, but so far, no standard indoor localiza-
tion system has been implemented due to 
inaccuracy and cost.
The problem with such a system per-
tains to localizing and tracking the user in 
an indoor space. This problem has many 
challenges that must be solved. Mainetti, 
et al. [1] lists some of these challenges, 
including: the loss of signal precision of 
wireless systems due to Non-Line-of-Sight 
(NLOS) conditions and multipath effect, 
scaling the system for large spaces, and 
complex environments.
A practical, accurate and cost-efficient 
indoor navigation system that solves these 
challenges has many beneficial ap- plica-
tions such as assisting firemen to navigate 
a burning, smoke-filled building, locating 
people in danger in emergency situations, 
and navigation of public spaces such as 
malls, airports, and university buildings.
One important but unconsidered appli-
cation of an indoor navigation system is as-
sistance for the visually impaired. In 2013, 
there was a reported 7.3 million people in 
the United States with some form of visual 
impairment [2]. With no form of eletronic 
navigation assistance when in an indoor 
setting, these individuals are hindered when 
traversing public spaces, such as malls, uni-
versities, airports and bus or train stations, 
among others. This means that these indi-
viduals need some form of help to find t ... n
scan for access points;
for i = 0 to N do
 for each ref. point containing the AP do
 if |RSS
IAP
 – RSS
IDB
| <= X then
 increase weight of location;
 end
 end
end
return highest weight location;
Algorithm 2: Estimating User Location.
Variable X is a threshold due to how RSSI values vary.
A. Fingerprinting
134 TRƯỜNG ĐẠI HỌC HẢI PHÒNG
Figure 1: System Diagram
The Wi-Fi Fingerprinting module will 
be used when NLOS conditions are de-
tected from all available beacons, or when 
no beacons are in range of detection. To 
implement fingerprinting, a map with ref-
erence points needs to be created. At every 
reference point, RSSI data for every avail-
able access point needs to be collected. 
The system makes use of the algorithm 
presented below to scan reference points 
with a device.
After this database is created, the 
system can estimate the user’s location 
through a weight based approach, where 
a weight is assigned to each reference 
point based on the similarities between the 
user’s current scans and the finger- print 
database. This is done through the algo-
rithm shown on algorithm 2.
 B. Pedestrian Dead Reckoning Model
BluNavi uses a dead reckoning model 
to track two key local-ization components: 
orientation and displacement (movement). 
Displacement occurs when the user of the 
system takes a step. Changes in orienta-
tion result from the user turning to face 
a new direction. The IMU’s available in 
most mobile devices are used to track both 
components. A gyroscope is used to track 
changes in orientation.
Displacement of the user is estimated 
by calculating the length of the user’s cur-
rent walk step. For this purpose, BluNavi’s 
dead reckoning model uses measurements 
provided by an accelerometer to calculate 
step length. The data is passed through a 
low-pass filter to remove noise and smooth 
the curve. The filtered values are then 
used in a formula derived from the one 
used by Bao, et al. [14]. The equation can 
be seen in Eq. 1.
( ) 418n fh al ch vll a a a a= − −
 (1)
where n is the current step, l
n
 is the 
length of step n, a
fh
 and a
fl
 are the high 
(maximum) and low (mimimum) values 
of the accelerometers forward accelera-
tion axis during step n, respectively, and 
a
vh
 and a
vl
 are the high and low values of 
the accelerometer’s vertical axis during 
135TẠP CHÍ KHOA HỌC, Số 44, tháng 01 năm 2021
step n, respectively. K is a constant that 
expresses the leg length of the user and is 
determined through training.
Two methods can be used to determine 
when a step has been completed. If a step 
detector is available in the mobile device, 
then the data provided from it is used for 
step detection. Otherwise, a step detec-
tion process begins when the vertical ac-
celeration values pass a set threshold. The 
threshold is used to avoid recording a false 
peak during the begining of a step. Fig. 2 
demonstrates a threshold on accelerometer 
data that was collected from a test where 
ten steps were taken. The peak is record-
ed when the partial derivative of the data 
changes from positive to negative. Then, 
the lowest value is recorded. When the next 
peak is detected, the process is over and the 
step length is calculated using equation 1.
Figure 2: Vertical Acceleration Data
C. Propagation Model
For indoor localization, distance from 
device to beacon is approximated using a 
radio frequency propagation model. Blu-
Navi uses the log-distance path loss model 
as described by Zhuang, et al [13]. The 
model can be seen in Eq. 2
0 10( ) ( ) 10 log ( )P d P d d Xσγ= − + (2)
where P (d) represents the RSS at dis-
tance d, P (d
0
) is the transmission power, 
γ is the path-loss exponent, and X
σ
 is a 
Gaussian random variable with zero mean 
and standard deviation of 4.11 found from 
experimental analysis of BLE beacon sig-
nal strength. The model has acceptable ac-
curacy in open, line of sight environments 
but suffers when used in enclosed places. 
For this reason, an extended Kalman Filter 
is used to increase the accuracy.
D. Extended Kalman Filter
The extended Kalman Filter (EKF) is 
used in BluNavi to increase the localiza-
tion accuracy of the system by fusing sen-
sor data provided by the dead reckoning 
model and the propagation model. The 
filter works in two steps: a prediction step 
and a correction step.
The prediction step predicts the cur-
rent state and the error of the prediction 
using a standard Kalman Filter process 
model and process covariance model. The 
process model estimates movement (or 
non-movement) through the indoor envi-
ronment. The model is given by Eq. 3.
1kp k kx Ax Bu−= + (3)
where x
kp
 is the predicted state 
vector at time k, A is the state tran-
sition matrix, x
k−1
 is the previous state 
vector, B is the control input transition 
matrix, and u
k
 is the control input vec-
tor. Control input will be step length esti-
mations provided by the dead reckoning 
model. The state vector is defined as:
[ ]Tx X Y= (4)
136 TRƯỜNG ĐẠI HỌC HẢI PHÒNG
the process covariance model is de-
fined as: 1
T
kp k kP AP A Q−= + (5)
where P
kp
 is the predicted process 
covariance matrix and Q
k
 is the process 
noise covariance matrix.
Next, after a BLE beacon signal is de-
tected, the propagation model feeds in the 
distance estimate into the measurement 
model of the filter, which is as follows:
k k k kz H x v= + (6)
where z
k
 is the measurement vector, 
H
k
 is the measurement transition matrix 
and vK is zero-mean, Gaussian white-noise 
caused by errors in the sensors.
The next step is to update the state 
vector and process covariance matrix 
based on the process and measurement 
models. The models for this step can be 
defined as follows:
( ) 1T Tk kp k k kp kK P H H P H R
−
= + (7)
( )k kp k k k kpx x K z H x= + − (8)
( )k k k kpP I K H K= − (9)
where K
k
 is the kalman gain, R is 
the measurement noise covariance 
matrix dervied from v
k
, x
k
 is the 
corrected current state estimate, and I is 
the identity matrix.
3. EVALUATION
Experimental analysis was conducted 
in order to evaluate the accuracy of the 
proposed system. Multiple test beds were 
created in the hallways of the University of 
South Florida ENB II building. One meter 
cells were established in each of the hall-
ways. An example of one of the test beds 
can be seen in Fig. 4. The accuracies of 
each module of BluNavi were tested and 
evaluated and a summary of the accura-
cies can be seen in Fig. 3.
Figurre 3: Table of Accuracies
Figure 4: Example Test Bed
A. Fingerprinting System
For the evaluation of the fingerprinting 
system, three diff erent hallway testbeds 
were used. Fingerprints were created out 
of three meter cells at each of the testbeds. 
An LG G4 was used to scan for Wi-Fi 
APs. Five tests were conducted at each 
of the testbeds, and each test was per-
formed twice. Each test consisted of 20 
estimations of the user’s location that the 
system would make under various condi-
tions. These tests involved different user 
movements such as: straightforward alter-
nations between cells, random alternations 
between cells, at different orientations per 
cell, at different positions within each cell, 
and for random movements within each 
cell. The accuracies of each test were cal-
culated, providing 30 data points. A nor-
137TẠP CHÍ KHOA HỌC, Số 44, tháng 01 năm 2021
mal distribution was assumed and tested 
for using the 30 data points, as shown in 
Fig. 5. For these evaluations, a confidence 
interval was calculated using this data set, 
which resulted in a 95% confidence of ± 
3.07% from the mean accuracy of 82.33% 
for three meter cells.
Figure 5: Distribution of Fingerprint 
System Accuracies
B. Dead Reckoning Model
The dead reckoning model was evalu-
ated by walking the perimeter of a rectan-
gular hallway. A Nexus 5 was used for this 
test. The ground truth was established 
by timestamps of the test when passing 
established reference points. Linear in-
terpolation was then used on this data to 
calculate the ground truth values between 
reference points. During the test, the x 
and y coordinates of the system were re-
corded every 500 milliseconds along with 
a timestamp. The error of each data point 
was then found by using the distance for-
mula between ground truth value and dead 
reckoning model estimate. The mean 
accuracy of the model was found to be 
3.88m ± 0.37m with 95% confidence. A 
comparison of the ground truth data points 
and dead reckoning model can be seen in 
upper half of Fig. 6. From the figure, it is 
clear that the dead reckoning model has a 
no way to correct itself from the inaccura-
cies of the step length estimation.
C. Figure 6: Traversals of the Dead Reck-
oning Model and Extended Kalman Filter 
Propagation Model
The evaluation of the propagation 
model took place in one of the previously 
mentioned test beds. A BKON A1 set at a 
transmission power of 0 dbm and adver-
tising interval of 500 ms was used for the 
test. The A1 can be seen in Fig. 7. A Nexus 
5 was used to scan for the BLE beacon. 
The test was conducted with line of sight 
conditions to the beacon. Ten signals were 
recorded for each one meter interval from 
one meter up to ten meters for a total of 100 
data points. The signals were then passed 
through the propagation model and the dis-
tance estimates recorded. The error of each 
distance estimate was computed and the 
mean error of the data set was found to be 
5.91m ± 1.61m with 95% confidence.
138 TRƯỜNG ĐẠI HỌC HẢI PHÒNG
Figure 7: BKON A1
D. Extended Kalman Filter
The extended Kalman Filter was 
evaluated similarly to the dead reckoning 
model. Eight of the A1 models were used 
for the test and placed around the same 
test bed used for the dead reckoning 
model evaluation. The Nexus 5 was also 
used for this test. The extended Kalman 
Filter state estimate (position) was record-
ed every 500 ms and 141 data points were 
collected. Ground truth timestamps were 
recorded at the same reference points used 
in the dead reckoning evaluation and linear 
interpolation was used to find the ground 
truth positions. The distance error of the 
data points was calculated and the mean 
error was found to be 10.22m ± 0.91m 
with 95% confidence. A comparison be-
tween ground truth data points and the ex-
tended Kalman Filter state estimates can 
be seen in the lower map of Fig. 6. From 
the results, it is clear that the system suf-
fers from a cumulative error problem.
4. CONCLUSIONS AND FUTURE WORK
The research conducted brought about 
functional systems for indoor localization 
through the development of the fin- ger-
printing system, dead reckoning model, 
propagation model and extended Kal-
man filter. Each component was evalu-
ated for accuracy. The fingerprinting sys-
tem achieved a mean accuracy of 82.33% 
± 3.07% with 95% confidence. The dead 
reckoning model obtained a mean accu-
racy of 3.88m ± 0.37m with 95% con-
fidence. The propagation model had an 
accuracy of 5.91m ±1.61m with 95% con-
fidence. The extended Kalman Filter with 
sensor fusion had an accuracy of 10.22m 
± 0.91m with 95% confidence. The fin-
gerprinting system proved to be a viable 
option for detecting users at room level 
accuracies. The extended Kalman filter 
proved to suffer from cumulative errors, 
but points to possible advantages of com-
bining with the fingerprinting system for 
the sake of correcting estimations done by 
the Kalman filter. As a future work, these 
systems would be improved upon so as to 
further increase their accuracies. Possible 
improvements include the implementation 
of a correlation algorithm for the finger-
printing system, such as Hidden Markov, 
and further work on the extended Kalman 
filter. These systems would also be inte-
grated into one single application for the 
sake collaboratively improving the overall 
accuracy, along with the implementation of 
a line of sight detection module for aid in 
deciding which system would be more ac-
curate given the user’s current conditions.
REFERENCE
1. L. Mainetti, L. Patrono, and I. Sergi, 
“A survey on indoor positioning systems,” in 
Software, Telecommunications and Computer 
Networks (SoftCOM), 2014 22nd International 
Conference on. IEEE, 2014, pp. 111–120.
139TẠP CHÍ KHOA HỌC, Số 44, tháng 01 năm 2021
2. “National Federation of the Blind blindness 
statistics”, https://nfb.org/blindness-statistics, accessed: 
2016-06-20.
3. V. Otsason, A. Varshavsky, A. LaMarca, and 
E. De Lara, “Accurate gsm indoor localization,” in 
International conference on ubiquitous computing. 
Springer, 2005, pp. 141–158.
4. N. Li and B. Becerik-Gerber, “Performance-
based evaluation of rfid- based indoor location 
sensing solutions for the built environment,” 
Advanced Engineering Informatics, vol. 25, no. 3, 
pp. 535–546, 2011.
5. J. Liu, “Survey of wireless based indoor 
localization technologies,” Dept. of Science & 
Engineering, Washington University, 2014.
6. A. Ward, A. Jones, and A. Hopper, “A new 
location technique for the active office,” IEEE 
Personal Communications, vol. 4, no. 5, pp. 42–
47, 1997.
7. C. Medina, J. C. Segura, and A. De la Torre, 
“Ultrasound indoor positioning system based on a 
low-power wireless sensor network providing sub-
centimeter accuracy,” Sensors, vol. 13, no. 3, pp. 
3501– 3526, 2013.
8. “Google beacons eddystone format,” 
https://developers.google.com/beacons/eddystone, 
accessed: 2016- 05-24.
9. S. Chan and G. Sohn, “Indoor localization 
using wi-fi based finger- printing and trilateration 
techiques for lbs applications,” International Archives 
of the Photogrammetry, Remote Sensing and Spatial 
Informa- tion Sciences, vol. 38, p. 4, 2012.
10. E. Navarro, B. Peuker, and M. Quan, 
“Wi-fi localization using rssi fin- gerprinting,” 
Bachelor’s thesis, California Polytechnic State 
University, 2010.
11. Z. Wu, E. Jedari, R. Muscedere, and R. 
Rashidzadeh, “Improved particle filter based on 
wlan rssi fingerprinting and smart sensors for 
indoor localization,” Computer Communications, 
vol. 83, pp. 64–71, 2016.
12. R. Faragher and R. Harle, “Location 
fingerprinting with bluetooth low energy beacons,” 
IEEE Journal on Selected Areas in Communications, 
vol. 33, no. 11, pp. 2418–2428, 2015.
13. Y. Zhuang, J. Yang, Y. Li, L. Qi, and N. El-
Sheimy, “Smartphone-based indoor localization 
with bluetooth low energy beacons,” Sensors, vol. 
16, no. 5, p. 596, 2016.
14. H. Bao and W.-C. Wong, “An indoor dead-
reckoning algorithm with map matching,” in 2013 
9th International Wireless Communications and 
Mobile Computing Conference (IWCMC). IEEE, 
2013, pp. 1534–1539.

File đính kèm:

  • pdfhe_thong_dinh_vi_va_dieu_huong_trong_nha.pdf