Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm

In this paper, the authors propose a novel adaptive multilayer T-S fuzzy controller (AMTFC) with a

optimize soft computing algorithm for a class of robust control uncertain nonlinear SISO systems.

First, a new multilayer T-S fuzzy was created by combined multiple simple T-S fuzzy model with a

sum function in the output. The multi-layer fuzzy model used in nonlinear identification has many

advantages over conventional fuzzy models, but it cannot be created by the writer's experience or

the trial and error method. It can only be created using an optimization algorithm. Then the parameters of multilayer fuzzy model is optimized by the differential evolution DE algorithm is used

to offline identify the inverse nonlinear system with uncertain parameters. The trained model was

validated by a different dataset from the training dataset for guarantee the convergence of the

training algorithm. Second, for robustly and adaptive purposes, the authors have proposed an additional adaptive fuzzy model based on Lyapunov stability theory combined with the optimized

multilayer fuzzy. The adaptive fuzzy based on sliding mode surface is designed to guarantee that

the closed-loop system is asymptotically stable has been proved base on a lyapunov stability theory. Furthermore, simulation tests are perfomed in Matlab/Simulink environment that controling

a water level of coupled tank with uncertain parameters are given to illustrate the effectiveness of

the proposed control scheme. The proposed control algorithm is implemented in simulation with

many different control parameters and it is also compared with the conventional adaptive control

algorithm and inverse controller. The simulation results also shows the superior of proposed controller than an adaptive fuzzy control or inverse controller when using the least mean square error

standard.

Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm trang 1

Trang 1

Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm trang 2

Trang 2

Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm trang 3

Trang 3

Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm trang 4

Trang 4

Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm trang 5

Trang 5

Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm trang 6

Trang 6

Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm trang 7

Trang 7

Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm trang 8

Trang 8

Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm trang 9

Trang 9

Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 13 trang baonam 4920
Bạn đang xem 10 trang mẫu của tài liệu "Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm

Adaptive multilayer T-S fuzzy controller for nonlinear siso system optimized by differential evolution algorithm
Science & Technology Development Journal – Engineering and Technology, 2(SI1):SI9-SI21
Open Access Full Text Article Research Article
1Industrial University of Ho Chi Minh
City, Viet Nam
2Faculty of Electrical and Electronics
Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268
Ly Thuong Kiet Street, District 10, Ho
Chi Minh City, Vietnam
3Vietnam National University Ho Chi
Minh City, Linh Trung Ward, Thu Duc
District, Ho Chi Minh City, Vietnam
Correspondence
Ho PhamHuy Anh, Faculty of Electrical
and Electronics Engineering, Ho Chi
Minh City University of Technology
(HCMUT), 268 Ly Thuong Kiet Street,
District 10, Ho Chi Minh City, Vietnam
Vietnam National University Ho Chi Minh
City, Linh Trung Ward, Thu Duc District,
Ho Chi Minh City, Vietnam
Email: hphanh@hcmut.edu.vn
History
 Received: 18-10-2018
 Accepted: 12-12-2018
 Published: xx-12-2019
DOI : 10.32508/stdjet.v3iSI1.717 
Adaptivemultilayer T-S fuzzy controller for nonlinear SISO system
optimized by differential evolution algorithm
Cao Van Kien1, Ho PhamHuy Anh2,3,*
Use your smartphone to scan this
QR code and download this article
ABSTRACT
In this paper, the authors propose a novel adaptive multilayer T-S fuzzy controller (AMTFC) with a
optimize soft computing algorithm for a class of robust control uncertain nonlinear SISO systems.
First, a new multilayer T-S fuzzy was created by combined multiple simple T-S fuzzy model with a
sum function in the output. The multi-layer fuzzy model used in nonlinear identification has many
advantages over conventional fuzzy models, but it cannot be created by the writer's experience or
the trial and error method. It can only be created using an optimization algorithm. Then the pa-
rameters of multilayer fuzzy model is optimized by the differential evolution DE algorithm is used
to offline identify the inverse nonlinear system with uncertain parameters. The trained model was
validated by a different dataset from the training dataset for guarantee the convergence of the
training algorithm. Second, for robustly and adaptive purposes, the authors have proposed an ad-
ditional adaptive fuzzy model based on Lyapunov stability theory combined with the optimized
multilayer fuzzy. The adaptive fuzzy based on sliding mode surface is designed to guarantee that
the closed-loop system is asymptotically stable has been proved base on a lyapunov stability the-
ory. Furthermore, simulation tests are perfomed in Matlab/Simulink environment that controling
a water level of coupled tank with uncertain parameters are given to illustrate the effectiveness of
the proposed control scheme. The proposed control algorithm is implemented in simulation with
many different control parameters and it is also compared with the conventional adaptive control
algorithm and inverse controller. The simulation results also shows the superior of proposed con-
troller than an adaptive fuzzy control or inverse controller when using the least mean square error
standard.
Key words: Multilayer T-S Fuzzy, Inverse Controller, Adaptive Control, Differential Evolution,
Lyapunov Theory
INTRODUCTION
Fuzzy logic was first proposed in 1965 by Zadeh1.
There aremany studies developed based on this fuzzy-
based domain, such as Fuzzy type-2, Fuzzy type-n,
neural fuzzy, hierarchical fuzzy to model and con-
trol nonlinear system,2,3. Recently, Takagi–Sugeno
(T–S) fuzzy model can provide a modeling frame for
nonlinear systems. The advantage of T–S fuzzy sys-
tems is that they allow us to use a set of local linear
systemswith correspondingmembership functions to
represent nonlinear systems. The T-S fuzzy model
is widely accepted as a powerful modeling tool and
it’s applications to various kinds of non-linear sys-
tems can be found in 4–9. Based on the T-S fuzzy
model of a plant, papers10–13 introduced a fuzzy con-
trol designmethod for nonlinear systems with a guar-
anteed H2=¥ model reference tracking performance.
However, if the membership functions of the T–S
fuzzy system encounter parametric-uncertainty prob-
lem, the T–S fuzzy system cannot operate efficiently.
Moreover, with a complex system, the more time it
requires for training, the more complex membership
functions that eventual fuzzy rule-table will become.
To achieve a higher precision from the Fuzzy model,
its parameters are required to be optimized and the
fuzzy structure is needed to be changed. Recently,
Type-2 fuzzy sets14–16 have been shown that they
prove better than type-1 ones both on representing
the nonlinear systems and handling the uncertain-
ties. Paper17 presented the problem of fuzzy con-
trol for nonlinear networked control systems with
packet dropouts and parameter uncertainties based
on the interval type-2 fuzzy-model-based approach.
Paper18 introduced an inverse controller based on
a type-2 fuzzy model control. Moreover, many re-
searchers used the optimization algorithms such as
a cuck ...  is superior to inverse fuzzy control methods and
adaptive fuzzy control.
CONCLUSIONS
In this paper, we propose an adaptive inverse multi-
layer fuzzy control coupled tanks system fluid level
regulation. The adaptive inverse multilayer fuzzy
logic controller is created from themultiple T-S Fuzzy
models and adaptive fuzzy model. The simulation
results show that proposed adaptive multilayer fuzzy
logic controller can be efficiently applied for con-
trol nonlinear system. The proposed controller pos-
sesses better control quality and proves strongly ro-
bust due to satisfy Lyapunov stability principle. It
is available for applying a scalable multilayer fuzzy
model to amore complex nonlinear uncertain system.
Thus, these results also ensure that proposed multi-
SI16
Science & Technology Development Journal – Engineering and Technology, 2(SI1):SI9-SI21
Figure 7: Validation result
Figure 8: Comparison results of algorithms with alpha=10, K=5
SI17
Science & Technology Development Journal – Engineering and Technology, 2(SI1):SI9-SI21
Figure 9: Comparison results of algorithms with alpha=2, K=5
Figure 10: Comparative results of algorithms with alpha=0.3, K=5
Table 2: COMPARATIVE PERFORMANCE OF THREE CONTROLLERS
Method LMSE
Inverse Fuzzy Control (IFC) 6.322 6.322
Adaptive Fuzzy Control (AFC) 4.229 4.675
Proposed Inverse Fuzzy Control with Adaptive Fuzzy (IFC+AFC) 2.648 2.8
SI18
Science & Technology Development Journal – Engineering and Technology, 2(SI1):SI9-SI21
layer fuzzy controller can be used to successfully con-
trol of uncertain nonlinear complex system in near fu-
ture study.
ABBREVIATION
SISO: Single Input – Single Output
MISO: Multi Input – Single Output
MIMO: Multi Input – Multi Output
DE: Differential Evolution
GA: Genetic Algorithm
PSO: Particle Swarm Optimization
T-S Fuzzy: Takagi-Sugeno Fuzzy
CONFLICT OF INTEREST
Theauthors declare that there is no conflict of interest.
AUTHOR CONTRIBUTIONS
CaoVanKien: Designed and performed experiments,
analysed data and co-wrote the paper.
Ho Pham Huy Anh: Supervised the research and co-
wrote the paper.
ACKNOWLEDGEMENT
This research is funded by Vietnam National Univer-
sity of Ho Chi Minh City (VNU-HCM) under grant
number B2020-20-04. We acknowledge the support
of time and facilities from Ho Chi Minh City Uni-
versity of Technology (HCMUT), VNU-HCM for this
study.
REFERENCES
1. Zadeh L, Sets F. Information and Control. 1965;8(8):338–3365.
Available from: https://doi.org/10.1016/S0019-9958(65)90241-
X.
2. Precup, Radu-Emil, Hellendoorn H. A survey on indus-
trial applications of fuzzy control. Computers in Industry.
2011;62(3):213–226. Available from: https://doi.org/10.1016/
j.compind.2010.10.001.
3. Qiu, Jianbin, Gao H, Steven X. Recent advances on fuzzy-
model-based nonlinear networked control systems: A survey.
IEEE Transactions on Industrial Electronics. 2016;63(2):1207–
1217. Available from: https://doi.org/10.1109/TIE.2015.
2504351.
4. Chiu, Chian-Song. T-S Fuzzy maximum power point tracking
control of solar power generation systems. IEEE Transactions
on Energy Conversion. 2010;25(4):1123–1132. Available from:
https://doi.org/10.1109/TEC.2010.2041551.
5. Rezaee, Babak, Zarandi MF. Data-driven fuzzy modeling
for Takagi-Sugeno-Kang fuzzy system. Information Sciences.
2010;180(2):241–255. Available from: https://doi.org/10.1016/
j.ins.2009.08.021.
6. Cheung, Ngaam J, Xue-MingD, Hong-Bin S. OptiFel: A conver-
gent heterogeneous particle swarm optimization algorithm
for Takagi-Sugeno fuzzymodeling. IEEE Transactions on Fuzzy
Systems. 2014;22(4):919–933. Available from: https://doi.org/
10.1109/TFUZZ.2013.2278972.
7. Cheung, Ngaam J, Hong-Bin S. OptiFel: A convergent hetero-
geneous particle swarm optimization algorithm for Takagi-
Sugeno fuzzy modeling. IEEE Transactions on Fuzzy Systems.
2014;22(4):919–933. Available from: https://doi.org/10.1109/
TFUZZ.2013.2278972.
8. Zou, Wen, Chaoshun L, Nan Z. A T-S Fuzzy Model Identifi-
cation Approach based on a Modified Inter Type-2 FRCM Al-
gorithm. IEEE Transactions on Fuzzy Systems. 2017;Available
from: https://doi.org/10.1109/TFUZZ.2017.2704542.
9. Salhi, Issam, Abdellatif B, Said D. Takagi-Sugeno fuzzy mod-
eling for three-phase micro hydropower plant prototype. In-
ternational Journal of Hydrogen Energy. 2017;42(28):17782–
17792. Available from: https://doi.org/10.1016/j.ijhydene.2017.
02.167.
10. Tseng, Chung-Shi, Bor-Sen C, Huey-JianU. Fuzzy tracking con-
trol design for nonlineardynamic systemsvia T-S Fuzzymodel.
IEEE Transactions on fuzzy systems. 2001;9(3):381–392. Avail-
able from: https://doi.org/10.1109/91.928735.
11. Xiaodong, Liu, Qingling Z. New approaches to H¥ controller
designs based on fuzzy observers for T-S Fuzzy systems via
LMI. Automatica. 2003;39(9):1571–1582. Available from:
https://doi.org/10.1016/S0005-1098(03)00172-9.
12. Nasiri, Alireza, et al. Reducing conservatism in HU Robust
State Feedback Control design of T-S Fuzzy Systems: A Non-
monotonic Approach. IEEE Transactions on Fuzzy Systems.
2017;.
13. Wei, Yanling, et al. A New Design of $ H $-Infinity Piecewise
Filtering for Discrete-Time Nonlinear Time-Varying Delay Sys-
tems via T-S Fuzzy Affine Models. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems. 2017;47(8):2034–2047.
Available from: https://doi.org/10.1109/TSMC.2016.2598785.
14. Mendel, JerryM, JohnRIB. Type-2 fuzzy setsmade simple. IEEE
Transactions on fuzzy systems. 2002;10(2):117–127. Available
from: https://doi.org/10.1109/91.995115.
15. Mendel, Jerry M. General type-2 fuzzy logic systems made
simple: a tutorial. IEEE Transactions on Fuzzy Systems.
2014;22(5):1162–1182. Available from: https://doi.org/10.
1109/TFUZZ.2013.2286414.
16. Li, Hongyi, et al. Control of nonlinear networked systems
with packet dropouts: interval type-2 fuzzy model-based ap-
proach.” . IEEE TransactionsonCybernetics. 2015;45(11):2378–
2389. PMID: 25474817. Available from: https://doi.org/10.
1109/TCYB.2014.2371814.
17. Kumbasar, Tufan, et al. Type-2 fuzzy model based con-
troller design for neutralization processes. ISA transactions.
2012;51(2):277–287. PMID: 22036014. Available from: https:
//doi.org/10.1016/j.isatra.2011.10.007.
18. Kumbasar, Tufan. An inverse controller design
method for interval type-2 fuzzy models. Soft Com-
puting. 2017;21(10):2665–2686. Available from:
https://doi.org/10.1007/s00500-015-1966-0.
19. Berrazouane, Sofiane, Mohammedi K. Parameter optimiza-
tion via cuckoo optimization algorithm of fuzzy controller for
energy management of a hybrid power system. Energy con-
version and management. 2014;78:652–660. Available from:
https://doi.org/10.1016/j.enconman.2013.11.018.
20. Soufi, Youcef, Bechouat M, Kahla S. Fuzzy-PSO con-
troller design for maximum power point tracking in photo-
voltaic system. International Journal of Hydrogen Energy.
2017;42(13):8680–8688. Available from: https://doi.org/10.
1016/j.ijhydene.2016.07.212.
21. Sundarabalan, K C, Selvi K. Real coded GA optimized fuzzy
logic controlled PEMFC based Dynamic Voltage Restorer for
reparation of voltage disturbances in distribution system. In-
ternational Journal of Hydrogen Energy. 2017;42(1):603–613.
Available from: https://doi.org/10.1016/j.ijhydene.2016.09.061.
22. Lutz, Adam, Bonderev V, Fiesnski C. Fuzzy neural network op-
timization and network traffic forecasting based on improved
evolution. Neural Networks &Machine Learning. 2017;1(1):2–
2.
23. Chen, Cheng-Hung, Chong-Bin L. Reinforcement Learning-
Based Differential Evolution With Cooperative Coevolution
for a Compensatory Neuro-Fuzzy Controller. IEEE Transac-
tions on Neural Networks and Learning Systems. 2017;PMID:
29990243. Available from: https://doi.org/10.1109/TNNLS.
2017.2772870.
SI19
Science & Technology Development Journal – Engineering and Technology, 2(SI1):SI9-SI21
24. Tu, Kuo-Yang, Tsu-Tian L, Wen-Jieh W. Design of a multilayer
fuzzy logic controller for multi-input multi-output systems.
Fuzzy sets and systems. 2000;111(2):199–214. Available from:
https://doi.org/10.1016/S0165-0114(97)00410-7.
25. Van-Kien C, Son N, Anh HPH. Identification of 2-DOF Pneu-
matic ArtificialMuscle SystemwithMultilayer Fuzzy Logic and
Differential EvolutionAlgorithm. The 12th IEEE Conference on
Industrial Electronics and Applications (ICIEA 2017). 2017;p.
1261–1266. Available from: https://doi.org/10.1109/ICIEA.
2017.8283033.
26. Mi, Yang, et al. Intelligent Power Sharing of DC IsolatedMicro-
grid Based on Fuzzy Sliding Mode Droop Control. IEEE Trans-
actions on Smart Grid. 2018;Available from: https://doi.org/10.
1109/TSG.2018.2797127.
27. Wang, Yueying, et al. Dissipativity-based fuzzy integral slid-
ing mode control of continuous-time T-S Fuzzy systems. IEEE
Transactions on Fuzzy Systems. 2017;Available from: https:
//doi.org/10.1109/TFUZZ.2017.2710952.
28. Xue, Yanmei, Bo-Chao Z, Xinghuo Y. Robust slidingmode con-
trol for T-S Fuzzy systems via quantized state feedback. IEEE
Transactions on Fuzzy Systems. 2017;Available from: https:
//doi.org/10.1109/TFUZZ.2017.2771467.
29. Li, Hongyi, et al. Adaptive sliding mode control for Takagi-
Sugeno fuzzy systems and its applications. IEEE Transac-
tions on Fuzzy Systems. 2017;Available from: https://doi.org/
10.1109/TFUZZ.2017.2686357.
30. Wen, Shiping, et al. Fuzzy control for uncertain vehicle ac-
tive suspension systems via dynamic sliding-mode approach.
IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems. 2017;47(1):24–32. Available from: https://doi.org/10.
1109/TSMC.2016.2564930.
31. Li, Jinghao, et al. Observer-Based Fuzzy Integral Sliding
ModeControl For Nonlinear Descriptor Systems. IEEE Transac-
tions on Fuzzy Systems. 2018;Available from: https://doi.org/
10.1109/TFUZZ.2018.2802458.
32. Li, Jinghao, et al. Robust Stabilization of T-S Fuzzy Stochastic
Descriptor Systems via Integral Sliding Modes. IEEE transac-
tions on cybernetics. 2017;PMID: 28945605. Available from:
https://doi.org/10.1109/TCYB.2017.2749244.
33. Li, Yongming, Shaocheng T. Adaptive fuzzy output-
feedback stabilization control for a class of switchednonstrict-
feedback nonlinear systems. IEEE transactions on cybernet-
ics. 2017;47(4):1007–1016. PMID: 26992190. Available from:
https://doi.org/10.1109/TCYB.2016.2536628.
34. Liu, Yan-Jun, et al. Adaptive Fuzzy Output Feedback Con-
trol for a Class of Nonlinear Systems with Full State Con-
straints. IEEE Transactions on Fuzzy Systems. 2018;Available
from: https://doi.org/10.1109/CAC.2018.8623628.
35. Zhou, Qi, et al. Adaptive fuzzy control for nonstrict-feedback
systems with input saturation and output constraint. IEEE
Transactions on Systems, Man, and Cybernetics: Systems
. 2017;47(1):1–12. Available from: https://doi.org/10.1109/
TSMC.2016.2557222.
36. Li, Yongming, Shuai S, Shaocheng T. Adaptive fuzzy control
design for stochastic nonlinear switched systems with arbi-
trary switchings and unmodeled dynamics. IEEE transactions
on cybernetics. 2017;47(2):403–414.
37. Tong, Shaocheng, et al. Observer-based adaptive fuzzy
backstepping control for a class of stochastic nonlinear
strict-feedback systems. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics). 2011;41(6):1693–
1704. Available from: https://doi.org/10.1109/TSMCB.2011.
2159264PMid:21788195.
38. Li, Hongyi, et al. Adaptive fuzzy backstepping tracking control
for strict-feedback systemswith input delay. IEEE Transactions
on Fuzzy Systems. 2017;25(3):642–652. Available from: https:
//doi.org/10.1109/TFUZZ.2016.2567457.
39. Liu, Heng, et al. Adaptive fuzzy backstepping control of
fractional-order nonlinear systems. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems. 2017;47(8):2209–2217.
Available from: https://doi.org/10.1109/TSMC.2016.2640950.
40. Sadek, Uroš, et al. Improved adaptive fuzzy backstepping
control of a magnetic levitation system based on Symbiotic
Organism Search. Applied Soft Computing. 2017;56:19–23.
Available from: https://doi.org/10.1016/j.asoc.2017.02.032.
SI20
Tạp chí Phát triển Khoa học và Công nghệ – Kĩ thuật và Công nghệ, 2(SI1):SI9-SI21
Open Access Full Text Article Bài Nghiên cứu
1Trường Đại học Công nghiệp Tp.HCM,
Việt Nam
2Trường Đại học Bách Khoa,
ĐHQG-HCM, Việt Nam
3Trường Đại học Công nghiệp Tp.HCM,
Việt Nam
Liên hệ
Hồ PhạmHuy Ánh, Trường Đại học Bách
Khoa, ĐHQG-HCM, Việt Nam
Email: hphanh@hcmut.edu.vn
Lịch sử
 Ngày nhận: 18-10-2018
 Ngày chấp nhận: 12-12-2018
 Ngày đăng: 31-12-2019
DOI : 10.32508/stdjet.v3iSI1.717
Bản quyền
© ĐHQG Tp.HCM. Đây là bài báo công bố
mở được phát hành theo các điều khoản của
the Creative Commons Attribution 4.0
International license.
Điều khiểnmờ nhiều lớp thích nghi áp dụng chomô hình phi
tuyến SISO tối ưu với giải thuật tiến hóa vi sai
Cao Văn Kiên1, Hồ PhạmHuy Ánh2,*, Nguyễn Ngọc Sơn3
Use your smartphone to scan this
QR code and download this article
TÓM TẮT
Bài báo đề xuất giải thuật điều khiển mờ nhiều lớp thích nghi (AMTFC) kết hợp giải thuật tính toán
mềm tối ưu áp dụng cho điều khiển hệ phi tuyến SISO có các tham số không chắc chắn. Đầu tiên,
mô hình mờ nhiều lớp được tạo ra bằng cách ghép nhiều mô hình mờ đơn giản với ngõ ra là một
hàm tổng. Mô hình fuzzy nhiều lớp dùng trong nhận dạng hệ phi tuyến có nhiều đặc điểm vượt
trội hơn so với mô hình mờ thông thường, tuy nhiên nó không thể tạo ra bằng kinh nghiệm của
người viết hay phương pháp thử sai nên chỉ có thể kết hợp với một giải thuật tối ưu. Các tham số
của mô hình mờ nhiều lớp ngược sau đó được nhận dạng với giải thuật tiến hóa vi sai (DE) nâng
cao để nhận dạngmô hình ngược của hệ phi tuyến với các tham số không chắc chắn. Kết quả mô
hình ngược được đánh giá trênmột tập dữ liệu khác so với tập dữ liệu huấn luyện để đảm bảo tính
hội tụ của mô hình nhận dạng. Tiếp theo, để tăng tính ổn định và sự thích nghi của giải thuật điều
khiển, tác giả đã có những đề xuất thêm vàomộtmô hìnhmờ thích nghi được xây dựng dựa vào lý
thuyết ổn định Lyapunov kết hợp với mô hình điều khiển ngược trước đó. Mô hình mờ thích nghi
dựa vào mặt trượt được thiết kế để đảm bảo hệ kín ổn định tiệm cận đã được các tác giả chứng
minh thành công theo lý thuyết ổn định Lyapunov. Thêm nữa, kết quả mô phỏng điều khiển mực
nướcmô hình bồn nước đôi với nhiều tham số điều khiển khác nhau và chất lượng điều khiển theo
tiêu chuẩn tổng bình phương sai số đã chứng minh sự hiệu quả của giải thuật đề xuất so với các
giải thuật điều khiển thích nghi truyền thống hoặc giải thuật điều khiển ngược.
Từ khoá: Mô hình mờ nhiều lớp, điều khiển ngược, điều khiển thích nghi, giải thuật tiến hóa vi
sai, ổn định Lyapunov
Trích dẫn bài báo này: Văn Kiên C, Huy Ánh H P, Ngọc Sơn N. Điều khiển mờ nhiều lớp thích nghi áp
dụng cho mô hình phi tuyến SISO tối ưu với giải thuật tiến hóa vi sai. Sci. Tech. Dev. J. - Eng. Tech.;
2(SI1):SI9-SI21.
SI21

File đính kèm:

  • pdfadaptive_multilayer_t_s_fuzzy_controller_for_nonlinear_siso.pdf