Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY

Tóm tắt. Vật liệu nanocompozit silica/polypyrol (SiO2/PPy) hiện nay được sử dụng rất rộng

rãi ở trên thế giới cũng như trong nước. Vật liệu này đã được tổng hợp bằng phương pháp vi

nhũ in situ nhằm ứng dụng trong lớp phủ hữu cơ bảo vệ chống ăn mòn cho thép CT3. Ảnh

hưởng của dung môi đến các đặc trưng, tính chất của nanocpmpozit SiO2/PPy đã được nghiên

cứu. Kết quả nghiên cứu cho thấy dung môi tổng hợp không ảnh hưởng nhiều đến cấu trúc và

hình thái của vật liệu tổng hợp được. Nanocompozit SiO2/PPy−W tổng hợp trong dung môi

nước có độ dẫn điện cao nhất (σ = 0,19 S.cm−1), cao hơn độ dẫn điện của SiO2/PPy−EW và

SiO2/PPy−E được tổng hợp trong dung môi rượu/nước và dung môi rượu (0,14 và 0,11 S.cm−1

tương ứng).

Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY trang 1

Trang 1

Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY trang 2

Trang 2

Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY trang 3

Trang 3

Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY trang 4

Trang 4

Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY trang 5

Trang 5

Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY trang 6

Trang 6

Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY trang 7

Trang 7

Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY trang 8

Trang 8

Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY trang 9

Trang 9

Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 13 trang baonam 9840
Bạn đang xem 10 trang mẫu của tài liệu "Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY

Nghiên cứu sự ảnh hưởng của dung môi đến quá trình tổng hợp nano composite SiO₂/PPY
 Transport and Communications Science Journal, Vol 72, Issue 3 (04/2021), 251-263 
 Transport and Communications Science Journal 
 RESEARCH ON THE EFFECTS OF SOLVENT ON THE 
 NANO COMPOSITE PROCESS SiO2/PPy 
 Lai Thi Hoan, Tran Thuy Nga 
University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam 
ARTICLE INFO 
TYPE: Research Article 
Received: 11/12/2020 
Revised: 18/02/2021 
Accepted: 23/02/2021 
Published online: 15/04/2021 
https://doi.org/10.47869/tcsj.72.3.2 
* Corresponding author 
Email: laithihoan@utc.edu.vn; Tel: 0912067212 
Abstract. The silica/polypyrrole nanocomposite (SiO2/PPy) material has been used a lot in 
Vietnam and in the countryside. This material has been synthesized using in situ micro-
emulsion method for application in organic coating to protect against corrosion for CT3 steel. 
The influence of the solvent on the characteristics and properties of SiO2/PPy nanocpmpozite 
has been studied. Our research results show that synthetic solvents do not much affect the 
structure and morphology of the synthesized materials. Nanocompozite SiO2/PPy−W 
synthesized in a water solvent has the highest conductivity (σ = 0.19 S.cm−1), and is higher 
than the electrical conductivity of SiO2/PPy−EW and SiO2/PPy−E that are synthesized in 
alcohol/water and alcohol solvent (0.14 S.cm−1 and 0.11 S.cm−1), respectively. 
Keywords: materials, nanocomposite, silica, polyppyrole, corrosion. 
 © 2021 University of Transport and Communications 
 251 
 Tạp chí Khoa học Giao thông vận tải, Tập 72, Số 3 (04/2021), 251-263 
 Tạp chí Khoa học Giao thông vận tải 
 NGHIÊN CỨU SỰ ẢNH HƯỞNG CỦA DUNG MÔI ĐẾN 
 QUÁ TRÌNH TỔNG HỢP NANO COMPOSITE SiO2/PPy 
 Lại Thị Hoan, Trần Thúy Nga 
Trường Đại học Giao thông vận tải, số 3 đường Cầu Giấy, Đống Đa, Hà Nội, Việt Nam 
THÔNG TIN BÀI BÁO 
CHUYÊN MỤC: Công trình khoa học 
Ngày nhận bài: 11/12/2020 
Ngày nhận bài sửa: 18/02/2021 
Ngày chấp nhận đăng: 23/02/2021 
Ngày xuất bản Online: 15/04/2021 
https://doi.org/10.47869/tcsj.72.3.2 
* Tác giả liên hệ 
Email: laithihoan@utc.edu.vn; Tel: 0912067212 
Tóm tắt. Vật liệu nanocompozit silica/polypyrol (SiO2/PPy) hiện nay được sử dụng rất rộng 
rãi ở trên thế giới cũng như trong nước. Vật liệu này đã được tổng hợp bằng phương pháp vi 
nhũ in situ nhằm ứng dụng trong lớp phủ hữu cơ bảo vệ chống ăn mòn cho thép CT3. Ảnh 
hưởng của dung môi đến các đặc trưng, tính chất của nanocpmpozit SiO2/PPy đã được nghiên 
cứu. Kết quả nghiên cứu cho thấy dung môi tổng hợp không ảnh hưởng nhiều đến cấu trúc và 
hình thái của vật liệu tổng hợp được. Nanocompozit SiO2/PPy−W tổng hợp trong dung môi 
 −1
nước có độ dẫn điện cao nhất (σ = 0,19 S.cm ), cao hơn độ dẫn điện của SiO2/PPy−EW và 
 −1
SiO2/PPy−E được tổng hợp trong dung môi rượu/nước và dung môi rượu (0,14 và 0,11 S.cm 
tương ứng). 
Từ khóa: vật liệu, nanocompozit, silica, polypyrol, ăn mòn. 
 © 2021 Trường Đại học Giao thông vận tải 
1. ĐẶT VẤN ĐỀ 
 Vật liệu nanocompozit có rất nhiều ứng dụng trong các lĩnh vực khác nhau trong đó có 
bảo vệ chống ăn mòn kim loại. Có nhiều phương pháp bảo vệ chống ăn mòn kim loại, nhưng 
phương pháp đơn giản, giá thành rẻ và dễ thi công là sử dụng lớp phủ bảo vệ hữu cơ. Cromat 
là pigment ức chế ăn mòn có hiệu quả cao trong lớp phủ hữu cơ, tuy nhiên cromat có độc tính 
cao, gây ung thư, vì vậy các nước trên thế giới đã dần dần loại bỏ cromat và nghiên cứu ức 
chế ăn mòn không độc hại để thay thế [1-3]. Khả năng ức chế ăn mòn và bảo vệ kim loại của 
các polyme dẫn được nghiên cứu lần đầu tiên bởi Mengoli năm 1981 [4] và DeBery năm 1985 
[5]. Các nghiên cứu gần đây tập trung vào nghiên cứu ứng dụng polyme dẫn như là phụ gia ức 
 252 
 Transport and Communications Science Journal, Vol 72, Issue 3 (04/2021), 251-263 
chế ăn mòn trong lớp phủ hữu cơ [6-8]. 
 Tại Việt Nam trong hơn mười năm trở lại đây đã có những công trình nghiên cứu về các 
polyme dẫn cũng như ứng dụng của chúng trong bảo vệ chống ăn mòn. Các nghiên cứu này 
tập trung chủ yếu vào hai loại polyme dẫn phổ biến và quan trọng nhất là polypyrrol (PPy) và 
polyanilin để bảo vệ chống ăn mòn cho sắt/thép [9-10]. So với polyanilin, PPy dẫn điện tốt 
trong cả môi trường axit cũng như môi trường trung tính, do đó có khả năng ứng dụng rộng 
rãi trong các lĩnh vực khác nhau như thiết bị lưu trữ năng lượng, cảm biến sinh học, vật liệu 
quang điện, lớp phủ chống ăn mòn [11]. Ngoài ra so với polyanilin, việc tổng hợp màng PPy 
trên nền kim loại ít khó khăn hơn nhờ pyrol có thế oxy hóa thấp và PPy có khả năng ổn định 
tốt hơn [12]. 
 Tuy nhiên, PPy có khả năng phân tán thấp, chính vì vậy mà các nhà nghiên cứu đã kết 
hợp PPy với các phụ gia nano để chế tạo nanocompozit. Hạt nano silica (SiO2) có diện tích bề 
mặt lớn, dễ phân án, sử dụng nano silica còn giúp nanocompozit có khả năng chịu được va 
đập; độ giãn nở cao; khả năng cách âm tốt; tính chịu ma sát - mài mòn; độ nén, độ uốn dẻo và 
độ kéo đứt cao và tăng khả n ...  được xác định bằng phương pháp quét 
thế vòng trên thiết bị điện hóa (IM6 Zahner – Lecktrik) với độ dày của mẫu (1 cm) và diện 
tích mẫu (0,2355 cm2). Đường thẳng thu được càng dốc thì độ dẫn càng cao. Từ giản đồ CV 
có thể xác định được ΔU và ΔI. Độ dẫn điện của vật liệu PPy và nanocompozit SiO2/PPy 
được xác định theo phương trình (2.1): 
 σ = (ΔI × d) / (ΔU × A) 
3. KẾT QUẢ VÀ THẢO LUẬN 
3.1. Phổ hồng ngoại IR 
 Phổ hồng ngoại IR của SiO2, PPy, SiO2/PPy−W, SiO2/PPy−EW và SiO2/PPy−E được thể 
hiện trên hình 3. Hình 3a quan sát thấy các pic đặc trưng cho các nhóm chức trong silica. Pic 
rộng ở vùng 3200-3800 cm−1 tương ứng với dao động hóa trị của nhóm –OH và nước trong 
 −1
mẫu. Pic tại 1648 cm đặc trưng cho dao động biến dạng của H2O. Pic hấp phụ mạnh tại 
1080 cm−1 và 464 cm−1 đặc trưng cho dao động bất đối xứng và dao động biến dạng của liên 
kết Si−O−Si. Pic tại 957 cm−1 và 787 cm−1 đặc trưng cho dao động hóa trị đối xứng Si−OH 
của nanosilica [17, 18]. 
 Đối với phổ IR của PPy, các dao động trong khoảng số sóng 2800 - 3700 cm−1 đặc trưng 
cho dao động hóa trị của các nhóm N−H, C−H thơm và –OH. Trong vùng dao động từ 1800 – 
1500 cm−1, tập trung các dao động hóa trị của liên kết đôi C=C thơm và dao động biến dạng 
của nhóm N−H. Các pic tương đối mạnh và có sự chồng chéo tại tần số 1530 cm−1. Dao động 
hóa trị của nhóm C−N tại 1450 cm−1 và 1405 cm−1, nhóm =C−H tại 1050 cm−1, phù hợp với 
các công bố khoa học khác. Vùng dao động dưới 1000 cm−1, có nhiều phổ với cường độ trung 
 255 
 Tạp chí Khoa học Giao thông vận tải, Tập 72, Số 3 (04/2021), 251-263 
bình, đó là vùng đặc trưng cho dao động biến dạng C−H của vòng pyrol. Ngoài ra còn thể 
hiện dao động của C−H thơm có 2H liền kề [19]. 
 Hình 3. Phổ hồng ngoại của SiO2 (a), PPy (b), SiO2/PPy−W (c), SiO2/PPy−EW (d) 
 và SiO2/PPy−E (e). 
 Bảng 2. Các pic đặc trưng và liên kết tương ứng của SiO2, PPy, SiO2/PPy−W, SiO2/PPy−E 
 và SiO2/PPy−EW. 
 Nhóm chức 
 υ υ υ υ 
 Mẫu Si-O-Si Si-OH C-C C-N
 - 
 PPy - 1530 1450 
 1080 
 SiO2 471 793 - - 
 1082 
 SiO2/PPy-W 469 790 1530 1452 
 1081 
 SiO2/PPy-E 470 792 1530 1450 
 1080 
 SiO2/PPy-EW 469 792 1530 1450 
3.2. Phổ tán xạ năng lượng tia X (EDX) 
 Kết quả phân tích tán xạ năng lượng tia X của SiO2, PPy và nanocompozit SiO2/PPy 
được tổng hợp khi thành phần dung môi tổng hợp thay đổi được chỉ ra trên hình hình 4 và 
bảng 3. Phổ EDX của SiO2 cho thấy các nguyên tố thành phần xuất hiện trong mẫu gồm silic 
và oxi, đây cũng là thành phần chính của các hạt nanosilica. Thành phần nguyên tố oxi chiếm 
tỉ lệ phần trăm khối lượng (58 %) lớn hơn so với silic (42 %). 
 Đối với PPy, cacbon chiếm 72,7 % và nitơ chiếm 22,55 % là thành phần cơ bản trong 
phân tử polypyrol. Tỷ số C/N phù hợp với đơn vị cơ bản của vòng pyrol. Sự hiện diện của 
nguyên tố clo chỉ ra PPy đã được pha tạp với anion clorua. 
 Phổ EDX của nanocompozit SiO2/PPy-W, SiO2/PPy−EW và SiO2/PPy−E đều có hình 
dạng tương tự nhau, bao gồm pic đặc trưng cho nguyên tố oxi và silic từ silica, cacbon, nitơ 
 256 
 Transport and Communications Science Journal, Vol 72, Issue 3 (04/2021), 251-263 
và clo từ PPy, phù hợp với kết quả thu được từ phổ IR ở trên. Phần trăm về khối lượng của 
nguyên tố silic tăng từ 20,18 lên 21,07 và 22,08 % tương ứng với nanocompozit 
SiO2/PPy−W, SiO2/PPy−EW và SiO2/PPy−E. 
 Hình 4. Phổ EDX của SiO2 (a), PPy (b), SiO2/PPy−W (c), SiO2/PPy−EW (e) và SiO2/PPy−E (e). 
 Bảng 3. Phần trăm khối lượng các nguyên tố của SiO2/PPy−W, SiO2/PPy−E và SiO2/PPy−EW. 
 % khối lượng 
 Mẫu 
 C O N Si Cl 
 PPy - 58,00 - 42,00 - 
 SiO2 72,70 - 22,55 - 4,75 
 SiO2/PPy-W 34,82 34,94 8,05 20,18 2,01 
 SiO2/PPy-E 32,77 36,05 7,15 22,08 1,95 
 SiO2/PPy-EW 33,46 36,04 7,45 21,07 1,98 
3.3. Hình ảnh SEM 
 Hình thái học bề mặt của SiO2, PPy, SiO2/PPy−W, SiO2/PPy−E và SiO2/PPy−EW được 
chỉ ra trên hình 5. Ảnh SEM (hình 5a) cho thấy nanosilica có dạng hình cầu, các hạt có sự có 
co cụm nhẹ, kích thước hạt khá đồng đều, khoảng 100-150 nm. PPy được tổng hợp trong 
dung dịch không chứa silica có dạng hình tấm (hình 5b). 
 Nanocompozit SiO2/PPy tổng hợp được có hình dạng cầu tương tự nhau và có sự co cụm. 
Tuy nhiên đường kính của các hạt nanocompozit đều lớn hơn so với hạt nano silica. Điều này 
là do sau khi các monome pyrol được hấp phụ trên bề mặt hạt silica, sự polyme hóa pyrol diễn 
ra với sự có mặt của chất oxi hóa. 
 Kết quả SEM cũng cho thấy SiO2/PPy được tổng hợp trong môi trường nước (hình 5c) 
hoặc etanol-nước (hình 5d) có đường kính lớn hơn so với tổng hợp trong môi trường etanol 
 257 
 Tạp chí Khoa học Giao thông vận tải, Tập 72, Số 3 (04/2021), 251-263 
(hình 5e). Điều này có thể được giải thích là do dung môi nước có độ phân cực lớn, thuận lợi 
cho quá trình hình thành liên kết Si−OH tạo thành lớp điện tích âm trên bề mặt silica, dễ dàng 
tạo liên kết với nhóm +NH2 trong chuỗi polypyrol, dẫn tới sự co cụm của các hạt làm tăng 
kích thước hạt. 
 Hình 5. Ảnh SEM của SiO2 (a), PPy (b), SiO2/PPy−W (c), SiO2/PPy−EW (d) và SiO2/PPy−E (e). 
3.4. Phổ XPS 
 Phổ XPS của PPy, SiO2/PPy-W, SiO2/PPy-EW và SiO2/PPy-E với vùng năng lượng rộng 
được thể hiện trên hình 6. Phổ của PPy cho thấy pic đặc trưng của ba nguyên tố, gồm cacbon 
C1s, nitơ N1s và clo Cl2p, phù hợp với kết quả EDX thu được ở trên. So sánh với phổ của PPy, 
có thể thấy phổ XPS của nanocompozit SiO2/PPy−W, SiO2/PPy−EW và SiO2/PPy−E có thêm 
sự xuất hiện của hai pic, tại 101,9 eV và 531,5 eV, tương ứng với pic của nguyên tố silic Si2p 
và oxi O1s. Kết quả này khẳng định sự có mặt của silica trong phân tử nanocompozit. 
 Đối với PPy, phổ lõi C1s được phân tích bởi bốn phổ thành phần (hình 7). Tại mức năng 
lượng liên kết thấp nhất và cường độ cao nhất, 285,1 eV, là pic chính của C1s, đại diện cho 
liên kết C−C giữa Cα và Cβ trong vòng pyrol. Tại mức năng lượng 286,2 eV; 287,8 eV và 
290,4 eV, có các pic lần lượt đặc trưng cho PPy dạng pha tạp tltk. Liên kết C=N và =C−NH•+ 
(polaron) được quy kết cho pic đặc trưng tại 286,2 eV. Liên kết –C=N+ trong PPy dạng 
bipolaron được đặc trưng bởi pic tại 287,8 eV. Pic tại mức năng lượng liên kết cao nhất 
(290,4 eV), cao hơn 6,3 eV so với pic chính của C, đặc trưng cho liên kết π−π* của vòng pyrol 
[20, 21]. Phổ lõi N1s được thể hiện trên hình 7 với ba thành phần chính. Pic chính của N tại 
 258 
 Transport and Communications Science Journal, Vol 72, Issue 3 (04/2021), 251-263 
mức năng lượng 399,6 eV được qui kết cho N trong liên kết −NH− trong vòng pyrol. Tại mức 
năng lượng liên kết cao hơn, xuất hiện 2 pic đặc trưng cho N ở trạng thái kích thích. Pic tại 
400,5 eV đại diện cho liên kết −NH•+ trong PPy dạng polaron. Nhóm =NH+ của PPy tại trạng 
thái bipolaron được đặc trưng bởi pic tại 402,4 eV [21]. 
 Hình 6. Phổ XPS của PPy, SiO2/PPy−W, SiO2/PPy−EW và SiO2/PPy−E. 
 Hình 7. Phổ lõi C1s và N1s của PPy. 
 Phổ lõi C1s và N1s của nanocompozit SiO2/PPy−W (hình 8), SiO2/PPy−EW (hình 9) và 
SiO2/PPy−E (hình 10), đều có dạng tương tự với phổ của PPy. Tuy nhiên có thể thấy sự dịch 
chuyển các pic trong nanocompozit về mức năng lượng thấp hơn hơn, cho thấy sự giảm độ 
dài liên kết liên hợp trong chuỗi polyme. 
 259 
 Tạp chí Khoa học Giao thông vận tải, Tập 72, Số 3 (04/2021), 251-263 
 Hình 8. Phổ lõi C1s và N1s của SiO2/PPy−W. 
 Hình 9. Phổ lõi C1s và N1s của SiO2/PPy−EW. 
 Hình 10. Phổ lõi C1s và N1s của SiO2/PPy−E. 
 Từ phổ XPS, các kết quả về phần trăm khối lượng mỗi nguyên tố và tỉ lệ giữa các trạng 
thái oxi hóa của nguyên tố N trong phân tử được thể hiện trong bảng 4. Kết quả cho thấy khi 
thay đổi thành phần dung môi tổng hợp, phần trăm về khối lượng của các nguyên tố có sự 
thay đổi nhẹ, không đáng kể, kết quả tương đương đồng với kết quả thu được từ phổ EDX. Về 
tỉ lệ thành phần của các trạng thái của N trong mẫu, có thể thấy đổi với PPy, N ở trạng thái 
 260 
 Transport and Communications Science Journal, Vol 72, Issue 3 (04/2021), 251-263 
trung hòa và trạng thái kích thích dạng polaron nhiều hơn, cho thấy PPy vẫn có khả năng bị 
oxi hóa tại trạng thái emeraldine. Đối với các mẫu nanocompozit, N ở trạng thái kích thích 
bipolaron nhiều hơn, cho thấy tỉ lệ PPy ở trạng thái leucomeradine – khử hoàn toàn lớn, làm 
giảm độ dẫn điện. 
 Bảng 4. Thông số tính toán từ phổ XPS. 
 % về khối lượng Tỉ lệ thành phần 
 Mẫu 
 C N O Si Cl −N+= −NH− −N+ 
 PPy 74,5 23,6 - - 1,9 0,08 0,65 0,27 
 SiO2/PPy−W 35,7 7,8 32,6 22,4 1,5 0,17 0,58 0,25 
 SiO2/PPy−EW 35,4 7,5 32,5 23,3 1,3 0,21 0,55 0,24 
 SiO2/PPy−E 34,5 7,7 32,6 23,8 1,4 0,24 0,51 0,25 
3.5. Độ dẫn điện 
 Độ dẫn của PPy, SiO2/PPy−W, SiO2/PPy−E và SiO2/PPy−EW được xác định thông qua 
giản đồ CV (hình 11). 
 Từ giản đồ CV, có thể xác định được U và I. Từ đó xác định độ dẫn của PPy và 
 −1
SiO2/PPy theo phương trình 2.1. Kết quả PPy đạt giá trị độ dẫn cao nhất 0,432 S.cm . Độ dẫn 
 −1
của nanocompozit SiO2/PPy giảm xuống 0,19; 0,14 và 0,11 S.cm khi được tổng hợp trong 
dung môi nước, etanol: nước với tỉ lệ 2:3 và 4:1. Điều này được giải thích là do sự có mặt của 
các hạt silica tự do, cách điện trong hệ compozit làm ngăn chặn, làm cho chuỗi polyme PPy 
và SiO2/PPy bị gián đoạn, từ đó làm giảm khả năng dẫn điện. 
 So sánh độ dẫn điện của nanocompozit tổng hợp trong dung dịch chứa thành phần dung 
môi khác nhau cho thấy với cùng hàm lượng SiO2 và PPy trong dung dịch tổng hợp, độ dẫn 
điện của vật liệu tổng hợp trong nước cao hơn, kết quả này một lần nữa khẳng định monome 
pyrol dễ bị polyme hóa hơn trong nước. 
 Hình 11. Giản đồ CV của vật liệu PPy, SiO2/PPy−W, SiO2/PPy−E và SiO2/PPy−EW. 
4. KẾT LUẬN 
 Các kết quả nghiên cứu thu được cho thấy khi thay đổi thành phần dung môi tổng hợp, 
hình thái cấu trúc của nanocompozit thay đổi không đáng kể. Tuy nhiên, giá trị độ dẫn điện, 
yếu tố quan trọng ảnh hưởng tới khả năng bảo vệ chống ăn mòn của nanocompozit SiO2/PPy 
 261 
 Tạp chí Khoa học Giao thông vận tải, Tập 72, Số 3 (04/2021), 251-263 
có sự thay đổi. Nanocompozit SiO2/PPy được tổng hợp trong dung môi nước có độ dẫn điện 
cao nhất. Do đó, dung môi nước là dung môi thích hợp để tổng hợp nanocompozit SiO2/PPy. 
LỜI CẢM ƠN 
 Nghiên cứu này được tài trợ bởi Trường đại học Giao thông vận tải trong đề tài mã số 
T2020–CB–008. Tác giả xin chân thành cảm ơn Bộ môn Hóa học, Khoa Khoa học Cơ bản và 
Trường Đại học Giao thông vận tải cùng các cộng sự đã hỗ trợ trong quá trình thực hiện thực 
nghiệm. 
TÀI LIỆU THAM KHẢO 
[1]. P. Richard, There is plenty of room at the bottom in Minituarization, Rienhold, New York, 1960. 
[2]. N. T. Dung, Nghiên cứu tổng hợp điện hóa màng polypyrrole trực tiếp trên nền thép tráng kẽm, 
Tạp chí khoa học và công nghệ, 43 (2005) 54-59. 
[3]. T. A. Trúc và các cộng sự, Lớp phủ bảo vệ chống ăn mòn trên cơ sở epoxy với sự có mặt của 
polyindol lai tạp axit indol-3butyric, Tạp chí hóa học, 45 (2007) 542-547. 
[4]. G. Mengoli et al., Anodic synthesis of polyaniline coating onto Fe sheets, Journal of Applied 
Polymer Science, 26 (1981) 4247-4257. https://doi.org/10.1002/app.1981.070261224 
[5]. D. W. DeBerry, Modification of the Electrochemical and Corrosion Behavior of Stainless steel 
with an Electroactive coating, Journal of Electrochemical Society, 132 (1985) 1022-1026. 
https://doi.org/10.1149/1.2114008 
[6]. N. V. Krstajić et al., Corrosion protection of mild steel by polypyrrole coatings in acid sulfate 
solutions, Electrochimica Acta, 42 (1997) 1685-1691. https://doi.org/10.1016/S0013-4686(96)00313-1 
[7]. G. Ruhi et al., Corrosion Resistant Polypyrrole/Flyash Composite Coatings Designed for Mild 
Steel Substrate, American Journal of Polymer Science, 5 (2015) 18-27. 
https://www.researchgate.net/publication/273576868_Corrosion_Resistant_PolypyrroleFlyash_Compo
site_Coatings_Designed_for_Mild_Steel_Substrate 
[8]. H. N. T. Le et al., Corrosion protection and conducting polymers: polypyrrole films on iron, 
Electrochimica Acta, 46 (2001) 4259-4272. https://doi.org/10.1016/S0013-4686(01)00699-5 
[9]. N. T. Dung, Trùng hợp điện hóa màng bảo vệ polypyrrole trực tiếp trên nền thép cacbon sử dụng 
salicylat làm ion đối, Tạp chí hóa học, 45 (2007) 18-23. 
[10]. T. V. Tân, Polyme dẫn điện và những áp dụng thực tế, Vietsciences, 2007. 
[11]. D. J. Yoon, Y. D. Kim, Synthesis and electrotheological behavior of sterically stabilized 
polypyrrole-silica-methylcallulose nanocomposite suspension, Journal of Colloid and Interface 
Science, 303 (2006) 573-578.  
[12]. R. Gangopadhyay, A. De, Conducting Polymer Nanocomposites: A Brief Overview, Chemistry 
of Materials, 1 (2001) 608-622. https://doi.org/10.1021/cm990537f 
 262 
 Transport and Communications Science Journal, Vol 72, Issue 3 (04/2021), 251-263 
[13]. W. G. Schmidt, K. Seino, Pyrrole (C4H4NH) and polypyrrole functionalized silicon surfaces 
calculated from first principles, Surface Review and Letters, 10 (2003) 221-226. 
https://doi.org/10.1142/S0218625X03004901 
[14]. H. Shirakawa et al., Synthesis of electrically conducting organic polymers: halogen derivatives of 
polyacetylene, (CH)x, Journal of the Chemical Society-Chemical Communications, 16 (1977) 578-
580. https://doi.org/10.1039/C39770000578 
[15]. Q. Cheng et al., Electrorheological properties of new mesoporous material with conducting 
polypyrrole in mesoporous silica, Microporous and Mesoporous Materials, 94 (2006) 193-199. 
https://doi.org/10.1016/j.micromeso.2006.03.039 
[16]. I. A. Rahman, V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent 
Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites-A Review, 
Journal of Nanomaterials, 2012 (2012) 15. https://doi.org/10.1155/2012/132424 
[17]. J. J. Chruściel, L. Ślusarski, Synthesis of nano silica by the sol-gel method and its activity toward 
polymers, Materials Science, 21 (2003) 461-469. 
https://www.researchgate.net/publication/286656983_Synthesis_of_nanosilica_by_the_sol-
gel_method_and_its_activity_toward_polymers 
[18]. K. R. Martin, The chemistry of silica and its potential health benefits, Journal of Nutrition, health 
& aging, 11 (2007) 94-97. 
https://www.researchgate.net/publication/6392416_The_chemistry_of_silica_and_its_potential_health
_benefits 
[19]. Q. Cheng et al., Synthesis and characterization of new mesoporous material with conducting 
polypyrrole confined in mesoporous silica, Materials Chemistry and Physics, 98 (2006) 504-508, 
https://doi.org/10.1016/j.matchemphys.2005.09.074 
[20]. L. Ruangchuay, J. Schwank, A. Sirivat, Surface degradation of α-naphthalene sulfonate-doped 
polypyrrole during XPS characterization, Applied Surface Science, 199 (2002) 128-137. 
https://doi.org/10.1016/S0169-4332(02)00564-0 
[21]. C. Malitesta et al., New findings on polypyrrole chemical structure by XPS coupled to chemical 
derivatization labelling, Journal of Electron Spectroscopy and Related Phenomena, 76 (1995) 629-634. 
https://doi.org/10.1016/0368-2048(95)02438-7 
 263 

File đính kèm:

  • pdfnghien_cuu_su_anh_huong_cua_dung_moi_den_qua_trinh_tong_hop.pdf