Bài giảng Toán tổ hợp - Chương 4: Đại cương về đồ thị
Nội dung
1. Giới thiệu
2. Các khái niệm cơ bản
3. Biểu diễn đồ thị
4. Đẳng cấu đồ thị
5. Đường đi, chu trình

Trang 1

Trang 2

Trang 3

Trang 4

Trang 5

Trang 6

Trang 7

Trang 8

Trang 9

Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Toán tổ hợp - Chương 4: Đại cương về đồ thị", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Toán tổ hợp - Chương 4: Đại cương về đồ thị
ĐẠI CƯƠNG VỀ ĐỒ THỊ
Chương 4.
2
Nội dung
1. Giới thiệu
2. Các khái niệm cơ bản
3. Biểu diễn đồ thị
4. Đẳng cấu đồ thị
5. Đường đi, chu trình
3
Bài toán. Thành phố Königsberg, Đức nằm trên một
con sông, có hai hòn đảo lớn nối với nhau và với đất
liền bởi bảy cây cầu. Bài toán đặt ra là có thể đi theo
một tuyến đường mà đi qua mỗi cây cầu đúng một
lần rồi quay lại điểm xuất phát hay không?
1. Giới thiệu
4
Năm 1736, nhà toán học
Leonhard Euler đã chứng
minh rằng điều đó là không
thể được.
5
Bài toán 1. Có thể vẽ hình phong bì thư bởi một nét
bút hay không? Nếu có hãy chỉ ra tuần tự các nét vẽ
1
3 2
4 5
6
Bài toán 2. Một đoàn kiểm tra chất lượng các con
đường. Để tiết kiệm thời gian, đoàn kiểm tra muốn đi
qua mỗi con đường đúng 1 lần. Kiểm tra xem có cách
đi như vậy không?
2
1
3
4
5
6
7
8
7
Bài toán 3. Một sinh viên muốn đi từ nhà đến trường
thì phải đi như thế nào? Cách đi nào là ngắn nhất?
8
Định nghĩa. Một đồ thị vô hướng
(undirected graph) G=(V, E) được
định nghĩa bởi:
• Tập hợp V được gọi là tập các
đỉnh (vertex) và n = |V| gọi là cấp
của đồ thị;
• Tập hợp E là tập các cạnh (edge)
của đồ thị; Mỗi cạnh e E được liên
kết với một cặp đỉnh {i, j}, không
phân biệt thứ tự
2. Các khái niệm cơ bản
9
Định nghĩa. Trên đồ thị vô hướng, xét cạnh e được
liên kết với cặp đỉnh {i, j}:
Cạnh e kề với đỉnh i và đỉnh j (hay đỉnh i và đỉnh j kề
với cạnh e); có thể viết tắt e=ij
Đỉnh i và đỉnh j được gọi là 2 đỉnh kề nhau (hay đỉnh i
kề với đỉnh j và ngược lại, đỉnh j kề với đỉnh i)
Hai cạnh nối cùng một cặp đỉnh gọi là hai cạnh song
song.
Cạnh có hai đỉnh trùng nhau gọi là một khuyên
Đỉnh kề
10
( ) { : ( , ) }v u V v u E
Tập các đỉnh kề với đỉnh v được viết là
Nhận xét. Đồ thị G hoàn toàn được xác định nếu
chúng ta biết
Vvv ),(
nên đồ thị G cũng có thể định nghĩa như sau:
( , )G V
Đỉnh kề
11
Cạnh song song: e1, e7
Khuyên: e9
Đỉnh treo: 5
Đỉnh cô lập: 6
(2) {1, 3, 4}
Đỉnh kề
12
Định nghĩa. Cho G là đồ thị vô hướng. Khi đó G
được gọi là:
a) đơn đồ thị (hay đồ thị đơn) nếu G không có
khuyên và không có cạnh song song
b) đa đồ thị nếu G không có khuyên, cho phép có
cạnh song song
c) giả đồ thị nếu G cho phép có cạnh song song và
có khuyên
Một số loại đồ thị vô hướng
13
b
d a
k
e
h
g
c
a
b
c d
b
c
a
d
14
Đồ thị rỗng: tập cạnh là tập rỗng
Đồ thị đủ: đồ thị vô hướng, đơn,
giữa hai đỉnh bất kỳ đều có đúng
một cạnh.
Đồ thị đủ n đỉnh ký hiệu là Kn.
Kn có
𝑛 n−1
2
cạnh.
Đồ thị k-đều: là đồ thị mà mọi đỉnh
đều có bậc bằng nhau và bằng k.
C
A B
Các dạng đồ thị
15
Đồ thị lưỡng phân: đồ thị vô
hướng G=(V, E) được gọi là đồ thị
lưỡng phân nếu tập V được chia
thành hai tập V1 và V2 thỏa:
V1 và V2 phân hoạch V;
Cạnh chỉ nối giữa V1 và V2.
Đồ thị lưỡng phân đủ: là đồ thị
lưỡng phân thỏa điều kiện mỗi đỉnh
trong V1 kề với mọi đỉnh trong V2.
• V1=n và V2=m, ký hiệu Kn,m
C
A
B
D
E
16 GV: Döông Anh Ñöùc 16
K4
K4
K3, 3
K2, 3
K2 K1, 1
K3
17
Định nghĩa. Một đồ thị có hướng
G=(V, U) được định nghĩa bởi:
• Tập hợp V được gọi là tập
các đỉnh.
• Tập hợp U là tập các cạnh (cung)
của đồ thị; Mỗi cạnh u U được
liên kết với một cặp đỉnh (i, j) V2.
Ký hiệu u=(i,j) hoặc u=ij.
Đồ thị có hướng
18
Trên đồ thị có hướng, xét cạnh u được liên kết với
cặp đỉnh (i, j):
i được gọi là đỉnh đầu, j được gọi là đỉnh cuối
Cạnh u kề với đỉnh i và đỉnh j (hay đỉnh i và đỉnh j
kề với cạnh u); có thể viết tắt u=(i, j). Cạnh u đi ra
khỏi đỉnh i và đi vào đỉnh j.
Đỉnh kề
19
( ), ( )v v
Định nghĩa. Cho đồ thị có hướng G=(V, E) và e=(u, v) E
• v là đỉnh sau của u
• u là đỉnh trước của v
• Tập hợp các đỉnh sau và đỉnh trước của v lần lượt là
Nhận xét. Đồ thị G hoàn toàn được xác định
nếu chúng ta biết
Vvv ),(
nên đồ thị G cũng có thể được định nghĩa như sau:
),( VG
Đỉnh kề
20
)(v
Ví dụ.
1
2
3 5
6
4
a
b
c
d
e
f
g
h
i
j k
l
v
1
2
3
5
6
)(v
Đỉnh kề
21
Cạnh song song
- u1, u7 cùng chiều
- u5, u8 ngược chiều
Khuyên: u2
Đỉnh treo: 6
Đỉnh cô lập: 5
22
Đồ thị có tập đỉnh và tập cạnh hữu hạn được gọi
là đồ thị hữu hạn
Trong học phần này ta chỉ làm việc với các đồ thị
hữu hạn. Để ngắn gọn chúng ta chỉ dùng thuật
ngữ ĐỒ THỊ và hiểu ngầm đó là đồ thị hữu hạn.
Đồ thị hữu hạn
23
Định nghĩa. Cho hai đồ thị G = (V,E) và G’ = (V’,E’)
(cùng vô hướng hoặc cùng có hướng).
G’ được gọi là đồ thị con của G, ký hiệu G’ G,
nếu V’ V và E’ E
Nếu V’= V và E’ E thì G’ được gọi là đồ thị con
khung của G.
Đồ thị con
G H
24
Định nghĩa. Xét đồ thị vô
hướng G. Bậc của đỉnh x
trong đồ thị G là số các cạnh
kề với đỉnh x, mỗi khuyên
được tính hai lần, ký hiệu là
degG(x) (hay deg(x)File đính kèm:
bai_giang_toan_to_hop_chuong_4_dai_cuong_ve_do_thi.pdf

