Bài giảng Toán A2 - Chương 3: Không gian vector
Nội dung
1. Một số khái niệm cơ bản
- Khái niệm không gian vector, kg vector con
- Không gian sinh bởi tập hợp
- Độc lập tuyến tính và phụ thuộc tuyến tính
2. Cơ sở, số chiều, hạng của hệ vector
3. Tọa độ
- Tọa độ vector, ma trận chuyển cơ sở
4. Tích vô hướng, cơ sở trực chuẩn
- Tích vô hướng
- Cơ sở trực chuẩn và trực giao hóa Gram-Schmidt
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Toán A2 - Chương 3: Không gian vector", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Toán A2 - Chương 3: Không gian vector
Chương 3 KHÔNG GIAN VECTOR Huỳnh Văn Kha Đại Học Tôn Đức Thắng Toán A2 - MS: C01002 Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Không gian vector Toán A2 - MS: C01002 1 / 23 Nội dung 1 Một số khái niệm cơ bản Khái niệm không gian vector, kg vector con Không gian sinh bởi tập hợp Độc lập tuyến tính và phụ thuộc tuyến tính 2 Cơ sở, số chiều, hạng của hệ vector 3 Tọa độ Tọa độ vector, ma trận chuyển cơ sở 4 Tích vô hướng, cơ sở trực chuẩn Tích vô hướng Cơ sở trực chuẩn và trực giao hóa Gram-Schmidt Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Không gian vector Toán A2 - MS: C01002 1 / 23 Không gian vector, kg vector con Cho tập V 6= ∅, trên V có 2 phép toán: cộng (+) và nhân với số thực. Nếu hai phép toán đó thỏa các tính chất sau thì ta nói V là một không gian vector: ∀u, v ,w ∈ V ; ∀h, k ∈ R 1. Giao hoán: u + v = v + u 2. Kết hợp: (u + v) + w = u + (v + w) 3. Tồn tại phần tử 0 sao cho: u + 0 = u, ∀u ∈ V 4. ∀u ∈ V ,∃(−u) ∈ V : u + (−u) = 0 5. h(ku) = (hk)u 6. (h + k)u = hu + ku 7. h(u + v) = hu + hv 8. 1.u = u Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Không gian vector Toán A2 - MS: C01002 2 / 23 Ví dụ: Tập các ma trậnMm×n cùng với phép cộng ma trận và phép nhân số với ma trận là một kg vector Tập Rn với phép cộng và nhân: I (x1, ..., xn) + (y1, ..., yn) = (x1 + y1, ..., xn + yn) I k (x1, ..., xn) = (kx1, ..., kxn) lập thành không gian vector Cho V là kg vector, W ⊂ V , W 6= ∅ Nếu ∀u, v ∈ W , ∀k ∈ R, ta có: u + v ∈ W và ku ∈ W . Thì ta nói W là không gian vector con của V Ký hiệu: W ≤ V Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Không gian vector Toán A2 - MS: C01002 3 / 23 Ví dụ: Xét xem W có là không gian vector con của V không? 1. V = R2, W = {(x , 0) : x ∈ R} 2. V = R2, W = {(x , 1) : x ∈ R} 3. V = R3, W = {(a − 2b, a + b, b) : a, b ∈ R} 4. V = Rn, W là tập nghiệm của hệ phương trình tuyến tính thuần nhất n ẩn số: AX = 0 (với A ∈Mm×n) Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Không gian vector Toán A2 - MS: C01002 4 / 23 Không gian sinh bởi tập hợp Cho V là kgvt và S = {u1, u2, . . . , un} ⊂ V Với mỗi bộ k1, k2, . . . , kn ∈ R, ta gọi vector v = k1u1 + k2u2 + · · ·+ knun là một tổ hợp tuyến tính của các vector u1, u2, . . . , un Gọi W là tập các tổ hợp tuyến tính của u1, u2, . . . , un thì W là không gian vector con của V . Ta nói W sinh bởi S hay S sinh ra W Ký hiệu: W = 〈S〉 = 〈u1, u2, ..., un〉 Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Không gian vector Toán A2 - MS: C01002 5 / 23 Ví dụ: Xét W = 〈u1, u2, u3〉 ≤ R4, với u1 = (2, 0,−1, 3), u2 = (0, 1, 2,−1), u3 = (2, 2, 3, 1) 1. Các vector v1 = (−2, 3, 7,−6), v2 = (2, 1, 1, 1) có thuộc W không? 2. Tìm điều kiện để v = (a, b, c , d) ∈ W Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Không gian vector Toán A2 - MS: C01002 6 / 23 Độc lập và phụ thuộc tuyến tính Cho V là kgvt, S = {u1, u2, . . . , un} S được gọi là độc lập tuyến tính nếu với mọi k1, k2, . . . , kn ∈ R, ta có: k1u1 + k2u2 + · · ·+ knun = 0 kéo theo k1 = k2 = · · · kn = 0 Nếu S không độc lập tuyến tuyến tính, ta nói S phụ thuộc tuyến tính Ví dụ: S = {u1, u2, u3} có độc lập tuyến tính không? 1. u1 = (1, 1, 0), u2 = (0, 1, 1), u3 = (1, 1, 1) 2. u1 = (−1, 0, 2), u2 = (1,−3, 1), u3 = (−5, 6, 4) Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Không gian vector Toán A2 - MS: C01002 7 / 23 Cơ sở và số chiều Không gian vector V gọi là n chiều nếu V có n vector độc lập tuyến tính, và mọi họ lớn hơn n vector trong V đều phụ thuộc tuyến tính. n gọi là số chiều của V , ký hiệu: dimV = n Một họ n vector độc lập tuyến tính trong không gian n chiều là một cơ sở của không gian đó Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Không gian vector Toán A2 - MS: C01002 8 / 23 Ví dụ: 1. Không gian Rn = {(x1, . . . , xn) : x1, . . . , xn ∈ R} có số chiều là n; có một cơ sở là B0 = {e1, e2, . . . , en}, với: e1 = (1, 0, ..., 0) e2 = (0, 1, ..., 0) ... en = (0, 0, ..., 1) Ta gọi nó là cơ sở chính tắc của Rn 2. B = {(0, 1, 1), (−1, 2, 1), (1, 1, 1)} có là cơ sở của R3 không? Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Không gian vector Toán A2 - MS: C01002 9 / 23 Chú ý Tập S ⊂ V là cơ sở của V khi và chỉ khi: S sinh ra V , nghĩa là: 〈S〉 = V , và S độc lập tuyến tính Nếu S là cơ sở của V thì: dimV = số phần tử của S Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Không gian vector Toán A2 - MS: C01002 10 / 23 Hạng của hệ vector; cơ sở, số chiều của 〈S〉 Trong kgvt V , cho hệ S = {u1, u2, . . . , un} ⊂ V . Khi đó, số chiều của 〈S〉 gọi là hạng của S , ký hiệu: rank S Nếu S ′ thu được bằng cách: I Đổi chỗ 2 phần tử của S I Nhân một vector của S với số khác 0 I Thay một vector của S bằng tổng của nó với α lần một vector khác trong S Thì 〈S〉 = 〈S ′〉 Để tìm cơ sở, số chiều của 〈S〉, ta làm như sau: I Sắp các vector của S thành hàng I Dùng phép biến đổi sơ cấp trên dòng, đưa về ma trận bậc thang. Suy ra sơ sở, số chiều (hạng của S) Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: K
File đính kèm:
- bai_giang_toan_a2_chuong_3_khong_gian_vector.pdf