Bài giảng Hồi quy đa biến: Kiểm định giả thuyết và lựa chọn mô hình
Lựa chọn mô hình
Phương pháp “từ tổng quát đến đơn giản” (Hendry/LSE)
Sử dụng các kiểm định để loại bỏ biến
Kiểm tra xem dấu của các hệ số hồi qui ước lượng có đúng kỳ vọng không
Sử dụng kiểm định t và kiểm định Wald
Sử dụng R2 điều chỉnh
Lựa chọn mô hình
Phương pháp “từ đơn giản đến tổng quát”
Liệu đưa thêm 1 hay nhiều biến giải thích có làm tăng mức ý nghĩa chung
của mô hình hay không?
Giả sử chúng ta có một mô hình với m biến (mô hình cũ)
(R): Yi = β1 + β2 X2i+ + βm Xmi+ ui
Sau đó chúng ta bổ sung thêm (K – m) biến giải thích (mô hình mới)
(U): Yi = β1 + β2 X2i+ + βm Xmi+ βm+1 Xm+1+ + βK XKi + vi
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Bạn đang xem tài liệu "Bài giảng Hồi quy đa biến: Kiểm định giả thuyết và lựa chọn mô hình", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Hồi quy đa biến: Kiểm định giả thuyết và lựa chọn mô hình
11/29/2012 1 HỒI QUY ĐA BIẾN: KIỂM ĐỊNH GIẢ THUYẾT VÀ LỰA CHỌN MÔ HÌNH GV : Đinh Công Khải – FETP Môn: Các Phương Pháp Định Lượng – MPP5 Giả thiết về qui luật chuẩn Giả thiết ui ~ N(0, σ 2) Các tính chất của ước lượng OLS trong hồi qui đa biến theo giả thiết phân phối chuẩn Ước lượng trong hàm hồi qui với 2 biến độc lập Yi = β1 + β2 X2i+ β3 X3i+ ui ),(~ˆ 2ˆ k kk N 3 ˆ ˆ - )ˆvar( - )ˆvar( 2 2 2 32i 2 3i 2 2 2 2i 3 2 2 32i 2 3i 2 2 2 3i 2 n u xxxx x xxxx x i ii ii 2 ˆ k 11/29/2012 2 Kiểm định hệ số hồi qui riêng Phương pháp kiểm định ý nghĩa: Kiểm định t Kiểm định 2 phía H0: βk = a Ha: βk ≠ a Trị kiểm định thống kê k s t kk ˆ ˆ Kiểm định hệ số hồi qui riêng Qui tắc bác bỏ Bác bỏ nếu |t| > tα/2 với t α/2 dựa trên phân phối t với bậc tự do là (n-K) Hoặc pvalue < α. Kiểm định 1 phía H0: βk ≥ a H0: βk ≤ a Ha: βk a Qui tắc bác bỏ Bác bỏ nếu t tα Hoặc pvalue < α pvalue < α 11/29/2012 3 Kiểm định hệ số hồi qui riêng Phương pháp kiểm định dựa trên khoảng tin cậy (1-α)100% Qui tắc bác bỏ Bác bỏ H0 nếu 0 không nằm trong khoảng tin cậy (1-α)100% của βk k stk ˆ2/ ˆ Kiểm định ý nghĩa thống kê của các hệ số hồi qui Phương pháp kiểm định ý nghĩa: Kiểm định F (Kiểm định Wald) Giả thuyết H0: β2 = β3 = .. = βK = 0 Ha: Ít nhất có một tham số βk khác 0 Trị kiểm định F: Qui tắc bác bỏ: Bác bỏ H0 nếu F ≥ F (K-1, n-K,α) hoặc pvalue ≤ α ),,1(~ )/( )1/( KnKF KnRSS KESS MSR MSE F 11/29/2012 4 Kiểm định ý nghĩa thống kê của các hệ số hồi qui Mối quan hệ giữa R2 và F Khi R2 càng lớn thì F càng lớn. Kiểm định F là thước đo ý nghĩa chung của mô hình hồi qui và cũng là kiểm định ý nghĩa của R2. Kiểm định H0: β2 = β3 = .. = βK = 0 tương đương kiểm định H0 : R 2 = 0 )/()1( )1/( 2 2 KnR KR F Lựa chọn mô hình Phương pháp “từ tổng quát đến đơn giản” (Hendry/LSE) Sử dụng các kiểm định để loại bỏ biến Kiểm tra xem dấu của các hệ số hồi qui ước lượng có đúng kỳ vọng không Sử dụng kiểm định t và kiểm định Wald Sử dụng R2 điều chỉnh 11/29/2012 5 Lựa chọn mô hình Phương pháp “từ đơn giản đến tổng quát” Liệu đưa thêm 1 hay nhiều biến giải thích có làm tăng mức ý nghĩa chung của mô hình hay không? Giả sử chúng ta có một mô hình với m biến (mô hình cũ) (R): Yi = β1 + β2 X2i++ βm Xmi+ ui Sau đó chúng ta bổ sung thêm (K – m) biến giải thích (mô hình mới) (U): Yi = β1 + β2 X2i++ βm Xmi+ βm+1 Xm+1++ βK XKi + vi Lựa chọn mô hình Dùng kiểm định Wald H0: βm+1 = βm+2 = .. = βK = 0 Ha: Ít nhất có một tham số βk ở trên khác 0 Trị kiểm định Qui luật bác bỏ H0: F > F(α, K-m, n-K) hoặc pvalue < α bổ sung các biến vào mô hình làm tăng một cách ý nghĩa ESS và R2. )/()1( )/()( )/( )/(][ 2 22 KnR mKRR KnRSS mKESSESS F U RU U RU 11/29/2012 6 Lựa chọn mô hình Kiểm định nhân tử Lagrance (R): Yi = β1 + β2 X2i++ βm Xmi+ ui (U): Yi = β1 + β2 X2i++ βm Xmi+ βm+1 Xm+1++ βK XKi + vi Kiểm định giả thuyết H0: βm+1 = βm+2 = .. = βK = 0 Ha: Ít nhất có một tham số βk ở trên khác 0 Lựa chọn mô hình Bước 1: Ước lượng mô hình (R) Bước 2: Tính phần dư, Bước 3: Ước lượng mô hình (*) Buớc 4: Với mẫu lớn, nR2 (R2 từ *) sẽ có phân phối Chi-square với tự do bậc bằng với số biến bị giới hạn (K-m). Nếu nR2 > χ2 (df=K-m) bác bỏ giả thuyết H0. Ruˆ iKKmmmmRi XXXXu .......ˆ 11221 11/29/2012 7 Lựa chọn dạng hàm hồi qui (phép thử MWD) Các giả thuyết H0: Yi = β1 + β2 X2i++ βK XKi+ ui là mô hình đúng (1) Ha: lnYi = β1 + β2 lnX2i++ βK lnXKi+ vi là mô hình đúng (2) Quy trình kiểm định Ước lượng mô hình tuyến tính (1); tính ; tính Ước lượng mô hình tuyến tính logarit (2) và tính Tạo biến mới Hồi qui Y theo Xs và Z1, bác bỏ H0 nếu hệ số hồi qui của Z1 có ý nghĩa thống kê theo kiểm định t thông thường. Yˆ Ynˆl Yˆln )nˆlˆ(ln1 YYZ Lựa chọn dạng hàm hồi qui (phép thử MWD) Tạo biến mới Hồi qui lnY theo lnXs và Z2, bác bỏ Ha nếu hệ số hồi qui của Z2 có ý nghĩa thống kê theo kiểm định t thông thường. )ˆnˆllog(2 YYofantiZ 11/29/2012 8 Các tiêu chuẩn chọn mô hình khác Kiểm định AIC (Akaike Info Criterion) Mô hình nào có giá trị của tiêu chuẩn này thấp hơn sẽ được chọn Thích hợp trong phân tích chuỗi thời gian Kiểm định Schwarz Mô hình nào có giá trị của tiêu chuẩn này thấp hơn sẽ được chọn Thích hợp đối với những mô hình đơn giản nke n RSS /2)( nkn n RSS /)( Các tiêu chuẩn chọn mô hình khác Kiểm định Hannan – Quinn (HQ Criterion) Mô hình nào có giá trị của tiêu chuẩn này thấp hơn sẽ được chọn nkn n RSS /2))(ln(
File đính kèm:
- bai_giang_hoi_quy_da_bien_kiem_dinh_gia_thuyet_va_lua_chon_m.pdf