Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ

Mạng nơron nhân tạo (ANN) đƣợc sử dụng để mô phỏng nhiệt độ không khí cho trạm khí tƣợng

Nhà Bè. Bộ số liệu sử dụng gồm 5 yếu tố đầu vào với 1 yếu tố đầu ra là nhiệt độ không khí. Cấu trúc

ANN trong phần mềm Matlab đƣợc thiết kế gồm 2 lớp ẩn với 3 cấp số lƣợng nơron (2, 5 và 8) trong mỗi

lớp ẩn và hàm chuyển tansig. Những độ dài chuỗi số liệu khác nhau từ 1 tháng đến 48 tháng khi khảo sát

đã cho kết quả R từ 0.8318 đến 0.9673. Giá trị R thay đổi không theo quy luật khi độ dài của chuỗi số liệu

từ 4 tháng trở xuống nhƣng lại mang xu hƣớng giống nhau cho cả 3 cấu trúc ANN khi số liệu dài bằng 6

tháng hoặc hơn. Với cùng cấu trúc ANN, độ dài chuỗi số liệu tăng không đảm bảo cho giá trị R tăng. Sự

sai lệch trong kết quả mô phỏng xảy ra mạnh hơn ở những đoạn đỉnh thấp hay cao của chuỗi số liệu, nhất

là khi cấu trúc ANN có số lƣợng noron ít trong lớp ẩn.

Từ khóa. Nhiệt độ không khí, yếu tố khí tƣợng, độ dài chuỗi số liệu, huấn luyện, mạng nơron nhân tạo

(ANN), mô phỏng.

Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ trang 1

Trang 1

Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ trang 2

Trang 2

Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ trang 3

Trang 3

Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ trang 4

Trang 4

Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ trang 5

Trang 5

Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ trang 6

Trang 6

Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ trang 7

Trang 7

Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ trang 8

Trang 8

Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ trang 9

Trang 9

Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ trang 10

Trang 10

pdf 10 trang baonam 10480
Bạn đang xem tài liệu "Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ

Ảnh hưởng của độ dài chuỗi số liệu đầu vào đến kết quả mô phỏng nhiệt độ không khí bằng mạng nơron nhân tạo (ANN) tại đồng bằng Nam Bộ
 Tạp chí Khoa học và Công nghệ, Số 39B, 2019 
 ẢNH HƯỞNG CỦA ĐỘ DÀI CHUỖI SỐ LIỆU ĐẦU VÀO ĐẾN KẾT QUẢ 
 MÔ PHỎNG NHIỆT ĐỘ KHÔNG KHÍ BẰNG MẠNG NƠRON NHÂN TẠO 
 (ANN) TẠI ĐỒNG BẰNG NAM BỘ 
 TRẦN TRÍ DŨNG 
 Trường Đại học Công nghiệp Thành phố Hồ Chí Minh 
 trantridung@iuh.edu.vn 
Tóm tắt. Mạng nơron nhân tạo (ANN) đƣợc sử dụng để mô phỏng nhiệt độ không khí cho trạm khí tƣợng 
Nhà Bè. Bộ số liệu sử dụng gồm 5 yếu tố đầu vào với 1 yếu tố đầu ra là nhiệt độ không khí. Cấu trúc 
ANN trong phần mềm Matlab đƣợc thiết kế gồm 2 lớp ẩn với 3 cấp số lƣợng nơron (2, 5 và 8) trong mỗi 
lớp ẩn và hàm chuyển tansig. Những độ dài chuỗi số liệu khác nhau từ 1 tháng đến 48 tháng khi khảo sát 
đã cho kết quả R từ 0.8318 đến 0.9673. Giá trị R thay đổi không theo quy luật khi độ dài của chuỗi số liệu 
từ 4 tháng trở xuống nhƣng lại mang xu hƣớng giống nhau cho cả 3 cấu trúc ANN khi số liệu dài bằng 6 
tháng hoặc hơn. Với cùng cấu trúc ANN, độ dài chuỗi số liệu tăng không đảm bảo cho giá trị R tăng. Sự 
sai lệch trong kết quả mô phỏng xảy ra mạnh hơn ở những đoạn đỉnh thấp hay cao của chuỗi số liệu, nhất 
là khi cấu trúc ANN có số lƣợng noron ít trong lớp ẩn. 
Từ khóa. Nhiệt độ không khí, yếu tố khí tƣợng, độ dài chuỗi số liệu, huấn luyện, mạng nơron nhân tạo 
(ANN), mô phỏng. 
 EFFECT OF THE LENGTH OF THE INPUT DATA SERIES ON 
 SIMULATION RESULTS OF AIR TEMPERATURE BY ARTIFICIAL 
 NEURAL NETWORK (ANN) IN NAM BO PLAIN 
Abstract. Artificial neural network (ANN) was used to simulate air temperature for Nha Be 
meteorological station. The data set used includes 5 inputs with an output element of air temperature. 
ANN structures in Matlab software were designed of 2 hidden layers with 3 levels of neuron number (2, 5 
and 8) in each hidden layer and tansig transfer function. Data series lengths varied from 1 month to 48 
months giving R from 0.8318 to 0.9673. R values did not follow any certain rule when the length of the 
data series was no longer than 4 months but bear the same tendency for all three ANN structures when the 
data was equal or longer than 6 months. With the same ANN structure, the increase in the data series 
length did not guarantee an increase in R value. The deviation in simulation results from measured data 
occured more strongly in the sections of the low or high peaks of the data series, especially when the 
ANN structure has a small number of neurons in the hidden layer. 
Keywords. air temperature, meteorological factors, length of data series, training, artificial neural 
network (ANN), simulation. 
1 MỞ ĐẦU 
 Nhiệt độ không khí có ảnh hƣởng hết sức quan trọng trong rất nhiều lĩnh vực kinh tế - xã hội nhƣ sản 
xuất nông nghiệp, chăn nuôi, giao thông vận tải, y tế. Là một nhân tố khí tƣợng chủ yếu, nhiệt độ không 
khí tác động mạnh mẽ tới cuộc sống và hoạt động của con ngƣời. Cho đến nay, trên thế giới đã có nhiều 
công trình đƣợc công bố về đặc điểm hình thành cũng nhƣ thay đổi của nhiệt độ không khí ở nhiều quốc 
gia. Trong số đó, một số nghiên cứu đã nêu rõ vai trò của các yếu tố khí tƣợng liên quan cần đƣợc đƣa 
vào phép tính toán hay kỹ thuật dự báo nhiệt độ không khí nhƣ độ ẩm tƣơng đối không khí, tổng bức xạ 
mặt trời, lƣợng mƣa, lƣợng bốc hơi và tốc độ gió [2, 5, 6, 17]. 
 © 2019 Trƣờng Đại học Công nghiệp Thành phố Hồ Chí Minh 
 30 ẢNH HƢỞNG CỦA ĐỘ DÀI CHUỖI SỐ LIỆU ĐẦU VÀO ĐẾN KẾT QUẢ MÔ PHỎNG NHIỆT ĐỘ 
 KHÔNG KHÍ BẰNG MẠNG NƠRON NHÂN TẠO (ANN) TẠI ĐỒNG BẰNG NAM BỘ 
 Để mô phỏng những hiện tƣợng trong tự nhiên, các nhà khoa học đã sử dụng nhiều cách tiếp cận 
khác nhau nhƣ ARIMA hay hồi quy đa biến. Đặc biệt, mạng nơron nhân tạo (ANN) là một trong những 
phƣơng pháp tiên tiến có khả năng mô phỏng hữu hiệu các quá trình diễn biến phức tạp và đã thể hiện hết 
sức hiệu quả trong thực tế. ANN là một hệ thống huấn luyện dựa trên tổ hợp nơron thần kinh với các kết 
nối nhằm thu nhận và xử lý nguồn dữ liệu thông tin đƣa vào. Sức mạnh của kỹ thuật ANN một phần nằm 
ở khả năng tìm ra đƣợc mối quan hệ phi tuyến phức tạp và ẩn giữa nhiều yếu tố mà đôi khi rất khó có thể 
đạt đƣợc bằng những phƣơng pháp khác. Rất nhiều tài liệu trong nƣớc và nƣớc ngoài ở các lĩnh vực nhƣ 
khí tƣợng, tài nguyên nƣớc hay môi trƣờng đã đề cập khá chi tiết đến những kết quả tốt thu đƣợc từ 
phƣơng pháp này [1, 3, 4, 7, 8, 9, 10, 13, 14, 15, 18]. Ở nƣớc ta, kỹ thuật ANN cũng đã đƣợc áp dụng 
hiệu quả trong một số lĩnh vực khoa học và đời sống nhƣ công tác điều tra nghiên cứu những đặc trƣng 
khí hậu [11, 12, 16]. 
 Với đà phát triển của cuộc cách mạng công nghiệp 4.0, kỹ thuật ANN ngày càng nhận đƣợc sự quan 
tâm lớn hơn. Bởi đây là phƣơng pháp có ứng dụng rộng rãi và đã chứng minh đƣợc hiệu quả trên thực tế, 
việc đánh giá ảnh hƣởng các đặc tính số liệu sử dụng đến kết quả ƣớc lƣợng và mô phỏng bằng ANN là 
một vấn đề hữu ích. Do đặc điểm hoạt động, kỹ thuật ANN thƣờng khai thác số liệu để từ đó đƣa ra kết 
luận và dẫn đến kết quả sẽ phụ thuộc vào đặc tính số liệu đƣợc cung ... ron nhân tạo, số 
liệu đầu vào cho mô phỏng đã đƣợc chuyển đổi về dạng số liệu trong khoảng giá trị từ 0.05 đến 0.95 (theo 
công thức 1 ở trên) và sau khi hoàn thành mô phỏng sẽ đƣợc chuyển đổi ngƣợc lại. 
 Độ chính xác trong mô phỏng hiện tƣợng của các cấu trúc ANN khác nhau đƣợc đánh giá chủ yếu 
bằng hệ số tƣơng quan (R) có tham khảo sai số tuyệt đối trung bình (MAE) và căn bậc hai của trung bình 
bình phƣơng sai số (RMSE) giữa kết quả mô phỏng và thực đo. 
 k
 y y yˆ y ˆ
 i 1 i i 
 R = (2) 
 k2 k 2
 y y yˆ yˆ 
 i 1i  i 1 i 
 1 k
 MAE =  yi- yˆ i (3) 
 k i=1
 k 2
 y -yˆ 
 RMSE = 1 i i (4) 
 k
 © 2019 Trƣờng Đại học Công nghiệp Thành phố Hồ Chí Minh 
 32 ẢNH HƢỞNG CỦA ĐỘ DÀI CHUỖI SỐ LIỆU ĐẦU VÀO ĐẾN KẾT QUẢ MÔ PHỎNG NHIỆT ĐỘ 
 KHÔNG KHÍ BẰNG MẠNG NƠRON NHÂN TẠO (ANN) TẠI ĐỒNG BẰNG NAM BỘ 
trong đó: 
 yi - giá trị thực đo; 
 yˆi - giá trị mô phỏng; 
 y - trung bình các giá trị thực đo; 
 yˆ - trung bình các giá trị mô phỏng; 
 k - tổng số lƣợng các giá trị; 
 i - số thứ tự giá trị. 
3 KẾT QUẢ VÀ THẢO LUẬN 
Kiểm tra chất lượng số liệu đưa vào mô phỏng 
 Bởi độ tin cậy khi sử dụng công cụ ANN trong mô phỏng nhiệt độ không khí tại trạm khí tƣợng Nhà 
Bè phụ thuộc nhiều vào chất lƣợng của số liệu sử dụng nên ta cần tiến hành công tác kiểm tra số liệu thô 
trƣớc khi bắt đầu mô phỏng. Mục tiêu nhằm loại bỏ những số liệu không hợp lý có thể do nhiều nguyên 
nhân khách quan và chủ quan khác nhau gây ra. 
 Số liệu đầu vào cho công tác mô phỏng đƣợc cung cấp bởi Đài khí tƣợng thủy văn khu vực Nam Bộ. 
Chuỗi số liệu khí tƣợng 4 năm (2013-2016) đã đƣợc kiểm tra để loại bỏ những số liệu kém chất lƣợng 
nhƣ giá trị quá cao hoặc quá thấp không hợp lý. Kết quả kiểm tra cho thấy số liệu đều có chất lƣợng tốt, 
ngoại trừ ngày 22/9/2013 có giá trị tổng lƣợng bức xạ ngày bị khuyết (bởi nguyên nhân không rõ). Số liệu 
ngày nêu trên đã bị loại khỏi tính toán ở các bƣớc tiếp theo. Những thống kê về số liệu đầu vào đƣợc thể 
hiện trong bảng 1; các đồ thị số liệu 1 tháng đại diện (tháng 8 năm 2013) đƣợc thể hiện trong các hình 2 ÷ 
6. 
 Bảng 1. Thống kê các yếu tố khí tƣợng đo đƣợc tại trạm khí tƣợng Nhà Bè 
 Số Đơn Giá trị lớn Giá trị nhỏ Giá trị 
 Tên yếu tố Độ lệch chuẩn 
 thứ tự vị đo nhất nhất trung bình 
 Độ ẩm tƣơng đối không 
 1 % 96.50 58.75 79.99 6.30 
 khí trung bình ngày 
 2 Lƣợng bốc hơi ngày mm 7.60 0.40 3.04 1.15 
 T ng b c x m t 
 ổng lƣợ ứ ạ ặ 2
 3 w/m 7212.00 543.00 4545.96 1196.51 
 trời ngày 
 Tốc độ gió trung bình 
 4 m/s 4.25 0.00 1.22 0.64 
 ngày 
 Nhi không khí 
 ệt độ o
 5 C 31.78 22.53 27.79 1.50 
 trung bình ngày 
 © 2019 Trƣờng Đại học Công nghiệp Thành phố Hồ Chí Minh 
 ẢNH HƢỞNG CỦA ĐỘ DÀI CHUỖI SỐ LIỆU ĐẦU VÀO ĐẾN KẾT QUẢ MÔ PHỎNG NHIỆT ĐỘ 33 
 KHÔNG KHÍ BẰNG MẠNG NƠRON NHÂN TẠO (ANN) TẠI ĐỒNG BẰNG NAM BỘ 
 Hình 2. Độ ẩm không khí đo tại Trạm Nhà Bè T.8/2013 Hình 3. Lƣợng bốc hơi ngày đo tại Trạm Nhà Bè T.8/2013 
 Hình 4. Bức xạ mặt trời đo tại Trạm Nhà Bè T.8/2013 Hình 5. Tốc độ gió ngày đo tại Trạm Nhà Bè T.8/2013 
 Hình 6. Nhiệt độ không khí đo tại Trạm Nhà Bè tháng 8/2013 
Mô phỏng nhiệt độ không khí bằng công cụ ANN 
 Sau khi qua kiểm tra chất lƣợng ở bƣớc trên, tổng số mẫu số liệu khí tƣợng thực đo ngày đƣa vào mô 
phỏng là 1459. Số lƣợng mẫu cụ thể sử dụng cho mỗi kịch bản chuỗi số liệu phụ thuộc vào số ngày trong 
(các) tháng thành phần nằm trong chuỗi, nhƣ tháng 1 có 31 ngày... Mỗi mẫu số liệu gồm thông tin của 5 
yếu tố đầu vào (độ ẩm tƣơng đối không khí trung bình ngày, lƣợng bốc hơi ngày, tổng lƣợng bức xạ mặt 
trời ngày, tốc độ gió trung bình ngày, ngày trong năm) với 1 yếu tố đầu ra là nhiệt độ không khí trung 
bình ngày. Các số liệu đã đƣợc phần mềm Matlab lựa chọn ngẫu nhiên theo tỷ lệ 70% số lƣợng mẫu để 
phục vụ cho các mục đích huấn luyện mạng, 15% cho xác nhận tổng hợp mạng và tránh hiện tƣợng quá 
ngƣỡng, 15% cho việc kiểm tra độc lập. 
 Việc mô phỏng đƣợc tiến hành 1000 lần cho mỗi tổ hợp cấu trúc ANN và độ dài chuỗi số liệu mô tả 
ở trên, trong đó số liệu đầu vào đƣợc phần mềm lựa chọn ngẫu nhiên theo tỷ lệ 70/15/15 để mô phỏng. 
Cho từng cấu trúc ANN, lần chạy cho giá trị hệ số tƣơng quan R tổng (giữa giá trị nhiệt độ không khí mô 
phỏng và thực đo) lớn nhất đƣợc ghi nhận. Tổng hợp kết quả mô phỏng dựa trên những giá trị hệ số tƣơng 
 © 2019 Trƣờng Đại học Công nghiệp Thành phố Hồ Chí Minh 
34 ẢNH HƢỞNG CỦA ĐỘ DÀI CHUỖI SỐ LIỆU ĐẦU VÀO ĐẾN KẾT QUẢ MÔ PHỎNG NHIỆT ĐỘ 
 KHÔNG KHÍ BẰNG MẠNG NƠRON NHÂN TẠO (ANN) TẠI ĐỒNG BẰNG NAM BỘ 
quan (R) và sai số tuyệt đối trung bình (MAE) tƣơng ứng cho những tổ hợp của cấu trúc ANN và độ dài 
chuỗi số liệu khác nhau nhƣ liệt kê trong bảng 2 và các hình 7 ÷ 11 dƣới đây. 
 Hình 7. Mô phỏng ANN cho cấu trúc 5-5-5-1 và độ dài chuỗi số liệu 12 tháng 
© 2019 Trƣờng Đại học Công nghiệp Thành phố Hồ Chí Minh 
ẢNH HƢỞNG CỦA ĐỘ DÀI CHUỖI SỐ LIỆU ĐẦU VÀO ĐẾN KẾT QUẢ MÔ PHỎNG NHIỆT ĐỘ 35 
 KHÔNG KHÍ BẰNG MẠNG NƠRON NHÂN TẠO (ANN) TẠI ĐỒNG BẰNG NAM BỘ 
Hình 8. Kết quả R với cấu trúc 5-5-5-1 và 12 tháng số liệu Hình 9.Kết quả R tổng với cấu trúc 5-5-5-1 và 12 tháng số liệu 
 Hình 10. So sánh kết quả mô phỏng nhiệt độ không khí sử dụng cấu trúc ANN 5-5-5-1 và 
 12 tháng số liệu đầu vào với dữ liệu đo hiện trƣờng cho giai đoạn 1/5/2013 - 30/6/2013 
 Bảng 2. Kết quả mô phỏng nhiệt độ không khí tại trạm khí tƣợng Nhà Bè 
 với các độ dài chuỗi số liệu khác nhau và mạng ANN 2 lớp ẩn 
 Độ dài chuỗi Số noron trong mỗi lớp ẩn 
 Tên thông số 
 số liệu (tháng) 2 5 8 
 1 0.8318 0.9352 0.9673 
 2 0.9132 0.9408 0.9508 
 4 0.9397 0.9605 0.9627 
 R 
 6 0.9251 0.9483 0.9665 
 12 0.9077 0.9348 0.9468 
 18 0.9110 0.9431 0.9512 
 © 2019 Trƣờng Đại học Công nghiệp Thành phố Hồ Chí Minh 
36 ẢNH HƢỞNG CỦA ĐỘ DÀI CHUỖI SỐ LIỆU ĐẦU VÀO ĐẾN KẾT QUẢ MÔ PHỎNG NHIỆT ĐỘ 
 KHÔNG KHÍ BẰNG MẠNG NƠRON NHÂN TẠO (ANN) TẠI ĐỒNG BẰNG NAM BỘ 
 24 0.8930 0.9311 0.9350 
 36 0.8903 0.9218 0.9260 
 48 0.8617 0.8930 0.9013 
 1 0.56791 0.54208 0.54568 
 2 0.69337 0.69714 0.65917 
 4 0.98359 1.00957 0.98752 
 6 0.94714 0.85939 0.85878 
 RMSE 12 0.71227 0.65399 0.61600 
 18 0.75924 0.64285 0.61211 
 24 0.74799 0.63000 0.61776 
 36 0.72661 0.62536 0.60924 
 48 0.76076 0.67481 0.65107 
 1 0.4692 0.4348 0.4380 
 2 0.5879 0.5889 0.5551 
 4 0.7727 0.8359 0.8285 
 6 0.7512 0.6845 0.7081 
 MAE 12 0.5783 0.5209 0.4995 
 18 0.5990 0.5018 0.4864 
 24 0.6001 0.5084 0.4954 
 36 0.5741 0.4943 0.4846 
 48 0.5709 0.5145 0.4985 
 Hình 11. Kết quả giá trị R thu đƣợc từ công tác mô phỏng nhiệt độ không khí 
 với độ dài chuỗi số liệu khác nhau (trục hoành không theo tỷ lệ) 
© 2019 Trƣờng Đại học Công nghiệp Thành phố Hồ Chí Minh 
 ẢNH HƢỞNG CỦA ĐỘ DÀI CHUỖI SỐ LIỆU ĐẦU VÀO ĐẾN KẾT QUẢ MÔ PHỎNG NHIỆT ĐỘ 37 
 KHÔNG KHÍ BẰNG MẠNG NƠRON NHÂN TẠO (ANN) TẠI ĐỒNG BẰNG NAM BỘ 
 Kết quả mô phỏng đã cho thấy một số điểm quan trọng sau: 
 - Giá trị R thu đƣợc qua mô phỏng thay đổi trong khoảng từ 0.8318 đến 0.9673. Hệ số tƣơng quan R 
nhỏ nhất khi số liệu đầu vào ngắn nhất (1 tháng) và cấu trúc ANN có số noron ít nhất (2) trong lớp ẩn, chỉ 
đạt 0.8318 (hay R2 = 0.6918). Dù rằng giá trị R nhỏ nhất vẫn đủ lớn để chấp nhận độ chính xác của kết 
quả mô phỏng nhiệt độ không khí (khi R2 đạt mức từ 0.6 ÷ 0.7) nhƣng kết quả cũng cho thấy không nên 
sử dụng cấu trúc ANN có số noron trong lớp ẩn bằng 2 (tức 5-2-2-1) khi độ dài chuỗi số liệu biến đổi mà 
nên sử dụng số noron trong lớp ẩn ít nhất bằng 5. Bên cạnh đó, trong đồ thị, những điểm mô phỏng bị sai 
lệch nhiều so với số liệu thực đo thƣờng nằm ở các đoạn đỉnh thấp hay cao của chuỗi số liệu, điều này đặc 
biệt rõ hơn khi số lƣợng noron trong lớp ẩn của cấu trúc ANN nhỏ. 
 - Với cùng một độ dài chuỗi dữ liệu, cấu trúc ANN (2 lớp) nào có số lƣợng noron trong lớp ẩn lớn 
hơn sẽ cho giá trị R cao hơn. Điều này đã thể hiện rõ sức ảnh hƣởng của số lƣợng noron trong mô phỏng. 
Tuy nhiên, giá trị R tăng chậm dần (thể hiện qua các đƣờng kết quả R gần nhau hơn trên đồ thị hình 11) 
khi số lƣợng noron trong lớp ẩn tăng lên. 
 - Với cùng một cấu trúc ANN, độ dài chuỗi số liệu đƣa vào mô phỏng tăng không chắc sẽ dẫn đến sự 
tăng lên của giá trị R hay độ chính xác của mô phỏng (ví dụ: 48 tháng số liệu cho R thấp hơn 6 tháng số 
liệu với mọi cấu trúc ANN đƣợc khảo sát). Điều này xảy ra có thể do những số liệu khác biệt mới đƣa vào 
chuỗi dài hơn lại mang tính biến động khác biệt nhiều so với quy luật vốn có của các chuỗi dữ liệu ngắn, 
từ đó gây khó khăn cho quá trình mô phỏng và ảnh hƣởng đến độ chính xác của kết quả. 
 - Khi độ dài của chuỗi số liệu đầu vào ngắn từ 4 tháng trở xuống, sự biến đổi R trong mô phỏng 
không tuân theo một quy luật nhất định. Nhƣng với các chuỗi số liệu có độ dài từ 6 tháng trở lên, sự biến 
đổi trong giá trị R thu đƣợc từ cả 3 cấu trúc ANN rất đồng nhất về xu hƣớng (cùng tăng hay cùng giảm) 
dù biên độ thay đổi của R từ các cấu trúc ANN nêu trên có khác nhau. 
4 KẾT LUẬN 
 Công tác mô phỏng nhiệt độ không khí tại trạm khí tƣợng Nhà Bè đã cho thấy tầm quan trọng của độ 
dài chuỗi số liệu đầu vào đến độ chính xác của kết quả mô phỏng khi áp dụng những cấu trúc ANN khác 
nhau. Sự biến đổi của giá trị R trong mô phỏng từ chỗ không tuân theo một quy luật nhất định khi độ dài 
của chuỗi số liệu đầu vào ngắn dƣới 4 tháng đến chỗ có xu hƣớng giống nhau khi sử dụng các chuỗi có độ 
dài từ 6 tháng trở lên đƣợc thể hiện rõ cho 3 cấu trúc ANN đã lựa chọn. Tuy nhiên, độ dài chuỗi số liệu 
đƣa vào mô phỏng tăng lên chƣa chắc sẽ dẫn đến sự tăng lên của giá trị R tức chất lƣợng mô phỏng (trong 
nghiên cứu này thậm chí còn có xu hƣớng giảm dần) khi sử dụng cùng một cấu trúc ANN bởi kết quả rất 
có thể còn phụ thuộc vào độ phức tạp của dữ liệu đầu vào. 
 Một kết quả khác từ công tác mô phỏng nhiệt độ không khí là sự sai lệch giữa kết quả mô phỏng với 
kết quả đo thƣờng xảy ra mạnh hơn ở đoạn thuộc các đỉnh thấp hay cao trong đồ thị của chuỗi số liệu. 
Đặc biệt, điều này càng thể hiện rõ rệt hơn trong trƣờng hợp cấu trúc ANN với số lƣợng noron ít trong 
lớp ẩn đƣợc sử dụng để mô phỏng. 
 Nghiên cứu này đã sử dụng 4 năm số liệu thực đo tại một trạm khí tƣợng miền Đông Nam Bộ trong 
quá trình mô phỏng. Dù đánh giá đã đƣợc thực hiện với những độ dài khác nhau của chuỗi số liệu nhƣng 
vị trí khảo sát mới chỉ giới hạn ở một trạm khí tƣợng nên cần đƣợc thử nghiệm thêm bằng số liệu thu thập 
từ những trạm khí tƣợng ở các địa phƣơng có đặc điểm tự nhiên khác nhau để có thể tổng quát hóa. Mặt 
khác, các tổ hợp thông số khí tƣợng cũng nhƣ cấu trúc ANN thay đổi cũng có thể sẽ có tác động tới mức 
độ ảnh hƣởng của độ dài chuỗi số liệu đến kết quả mô phỏng nhiệt độ không khí và cũng cần đƣợc điều 
tra thêm trong tƣơng lai. 
LỜI CẢM ƠN 
 Tác giả xin cảm ơn Trƣờng Đại học Công nghiệp thành phố Hồ Chí Minh đã tạo mọi điều kiện thuận 
lợi để cho nghiên cứu này có thể hoàn thành. Rất cảm ơn các đồng nghiệp ở Viện Khoa học Công nghệ và 
Quản lý Môi trƣờng đã hỗ trợ tác giả trong quá trình thực hiện công việc. Xin cám ơn Đài khí tƣợng thủy 
văn khu vực Nam Bộ đã cung cấp số liệu cho nghiên cứu. 
 © 2019 Trƣờng Đại học Công nghiệp Thành phố Hồ Chí Minh 
38 ẢNH HƢỞNG CỦA ĐỘ DÀI CHUỖI SỐ LIỆU ĐẦU VÀO ĐẾN KẾT QUẢ MÔ PHỎNG NHIỆT ĐỘ 
 KHÔNG KHÍ BẰNG MẠNG NƠRON NHÂN TẠO (ANN) TẠI ĐỒNG BẰNG NAM BỘ 
TÀI LIỆU THAM KHẢO 
[1] Aqil M., Kita I., Yano A., Nishiyama S., Neural networks for real time catchment flow modeling and prediction, 
 Water Resources Management, 21, pp. 1781-1796, 2007. 
[2] Baboo S.S. and Shereef I. K., An Efficient Weather Forecasting System using Artificial Neural Network, 
 International Journal of Environmental Science and Development, 1(4), pp. 321-325, 2010. 
[3] Đào Nguyên Khôi và Huỳnh Ái Phƣơng, Mô phỏng dòng chảy lƣu vực sông Sêrêpôk với mạng nơ-ron nhân tạo, 
 Science & Technology Development, 19: T3-2016, pp. 114-124, 2016. 
[4] Granger R. J. and Hedstrom N., Modeling hourly rates of evaporation from small lakes, Hydrology and Earth 
 System Science, 15, pp. 267-277, 2011. 
[5] Hayati M, and Mohebi Z., Application of Artificial Neural Networks for Temperature Forecasting, World 
 Academy of Science, Engineering and Technology International Journal of Electrical and Computer 
 Engineering, 1(4), pp. 662-666, 2007. 
[6] Kaur A., Singh H., Artificial Neural Networks in Forecasting Minimum Temperature, International Journal of 
 Electronics & Communication Technology, 2(3), pp. 101-105, 2011. 
[7] Kleiber W., Katz R. W. and Rajagopalan B., Daily minimum and maximum temperature simulation over 
 complex terrain. The Annals of Applied Statistics, Vol. 7, No. 1, pp. 588 - 612, 2013. 
[8] Kumar M., Bandyopadhyay A., Raghuwanshi N.S., and Singh R., Comparative study of conventional and 
 artificial neural network-based ETo estimation models, Irrigation Science, 26, pp. 531-545, 2008. 
[9] Lê Văn Nghinh, Hoàng Thanh Tùng, Nguyễn Ngọc Hải, Nghiên cứu ứng dụng mạng nơron thần kinh vào dự báo 
 lũ các sông ở tỉnh Bình Định và Quảng Trị, Tạp chí Khoa học kỹ thuật Thủy lợi và Môi trƣờng, Số 14 
 (8/2006), trang 65-70, 2006. 
[10] Narvekar M., Fargose P., Daily weather forecasting using Artificial Neural Network, International Journal of 
 Computer Applications (0975-8887), Volume 121-No.22, pp. 9-13, 2015. 
[11] Nguyễn Quang Hoan, Phạm Thị Trang, Hoàng Hồng Công, Nguyễn Thị Huyền, Dự báo thời tiết ứng dụng 
 mạng nơron nhân tạo và thuật toán Bayes, Tạp chí Khoa học & Công nghệ, Số 13, trang 39-43, 2017. 
[12] Nguyễn Tân Ân, Nguyễn Quang Hoan, Hệ dự báo thời tiết với ứng dụng của mạng nơron nhân tạo, Tạp chí 
 Khoa học & Công nghệ, 90(02), trang 65-70, 2012. 
[13] Raza K., Jothiprakash V., Multi-output ANN model for prediction of seven meteorological parameters in a 
 weather station, Journal of The Institution of Engineers (India): Series A, 95(4), pp. 221-229, 2014. 
[14] Seyam M., Mogheir Y., Application of Artificial Neural Networks model as analytical tool for groundwater 
 salinity, Journal of Environmental Protection, 2, pp. 56-71, 2011. 
[15] Tan S.B.K., Shuy E.B., and Chua L.H.C., Modelling hourly and daily open-water evaporation rates in areas 
 with an equatorial climate, Hydrological Processes, 21, pp. 486-499, 2007. 
[16] Trần Thị Vân, Hà Dƣơng Xuân Bảo, Đinh Thị Kim Phƣợng, Nguyễn Thị Tuyết Mai và Đặng Thị Mai Nhung, 
 Đặc điểm môi trƣờng nhiệt và diễn biến đảo nhiệt đô thị bề mặt khu vực bắc thành phố Hồ Chí Minh, Tạp ch 
 Khoa học Trƣờng Đại học Cần Thơ, 49(A), trang 11-20, 2017. 
[17] Ustaoglu B., Cigizoglub H. K. and Karacaa M., Forecast of daily mean, maximum and minimum temperature 
 time series by three artificial neural network methods, Meteorological Applications, 15, pp. 431- 445, 2008. 
[18] Zhu S., Nyarko E. K. and Hadzima-Nyarko M., Modelling daily water temperature from air temperature for the 
 Missouri River, PeerJ, 6:e4894, 2018. 
 Ngày nhận bài: 17/04/2019 
 Ngày chấp nhận đăng: 08/06/2019 
© 2019 Trƣờng Đại học Công nghiệp Thành phố Hồ Chí Minh 

File đính kèm:

  • pdfanh_huong_cua_do_dai_chuoi_so_lieu_dau_vao_den_ket_qua_mo_ph.pdf